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Outline

• Possible goals for Bayesian model uncertainty analysis

• Formulation and motation for Bayesian model uncertainty

• Model averaging

• Attractions of the Bayesian approach

• Challenges with the Bayesian approach

• Approaches to prior choice for model uncertainty

• Selecting a single model for prediction
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I. Possible Goals for Bayesian Model
Uncertainty Analysis
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Goal 1. Selection of the true model from a collection of models that

contains the truth.

– decision-theoretically, often viewed as choice of 0-1 loss in model selection

Goal 2. Selection of a model good for prediction of future observations or

phenomena

– decision-theoretically, often viewed as choice of squared error loss for

predictions, or Kullback-Liebler divergence for predictive distributions

Goal 3. Finding a simple approximate model that is close enough to the

true model to be useful. (This is purely a utility issue.)

Goal 4. Finding important covariates, important relationships between

covariates, and other features of model structure. (Often, the model is

not of primary importance; it is the relationships of covariates in the

model, or whether certain covariates should even be in the model, that

are of interest.)
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Caveat 1: Suppose the models under consideration do not contain the

true model, often called the open model scenario.

Positive fact: Bayesian analysis will asymptotically give probability one

to the model that is as close as possible to the true model (in Kullback

Leibler divergence), among the models considered, so the Bayesian

approach is still viable.

Issues of concern:

• Bayesian internal estimates of accuracy may be misleading (Barron,

2004).

• Model averaging may no longer be optimal.

• There is no obvious reason why models need even be ‘plausible’.

Caveat 2: There are two related but quite different statistical paradigms

involving model uncertainty:

• Model criticism or model checking (Lecture 9)

• The process of model development
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II. Formulation and Notation for Bayesian
Model Uncertainty
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Models (or hypotheses). Data, x, is assumed to have arisen from one of

several models:

M1: x has density f1(x | θ1)

M2: x has density f2(x | θ2)

. . .

Mq: x has density fq(x | θq)

Assign prior probabilities, P (Mi), to each model. Common is

P (Mi) =
1

q
,

but this is inappropriate in multiple testing scenarios.
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Example: In variable selection, where each of m possible βi could be in or

out of the model, to control multiplicity

• let each variable, βi, be independently in the model with unknown

probability p (called the prior inclusion probability);

• assign p a uniform distribution.

• Then, if Mi has ki variables,

P (Mi) =

∫ 1

0

pki(1−p)m−kidp = Beta(1+ki, 1+m−ki) =
ki!(m− ki)!

(m+ 1)!
.

(Using equal model probabilities would give P (Mi) = 2−m for all Mi.)

• This is equivalent to assigning probability 1/(m+ 1) to all models of a

given size, with that mass divided equally among the models of the

given size (as recommended by Jeffreys, 1961).
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Under model Mi :

– Prior density of θi: θi ∼ πi(θi)

– Marginal density of x:

mi(x) =

∫
fi(x | θi)πi(θi) dθi

measures “how likely is x under Mi”

– Posterior density of θi:

πi(θi | x) = π(θi | x,Mi) =
fi(x | θi)πi(θi)

mi(x)

quantifies (posterior) beliefs about θi if the true model was Mi.
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Bayes factor of Mj to Mi:

Bji =
mj(x)

mi(x)

Posterior probability of Mi:

P (Mi | x) =
P (Mi)mi(x)∑q

j=1 P (Mj)mj(x)
=

 q∑
j=1

P (Mj)

P (Mi)
Bji

−1

Particular case : P (Mj) = 1/q :

P (Mi | x) = mi(x) =
mi(x)∑q
j=1 mj(x)

=
1∑q

j=1 Bji

Reporting : It is useful to separately report {mi(x)} and {P (Mi)}, along
with

P (Mi | x) =
P (Mi)mi(x)∑q

j=1 P (Mj)mj(x)
.
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Example: location-scale

Suppose X1, X2, . . . , Xn are i.i.d with density

f(xi | µ, σ) =
1

σ
g

(
xi − µ

σ

)
(loc, scal)

Several models are entertained:

MN : g is N(0, 1)

MU : g is Uniform (0, 1)

MC : g is Cauchy (0, 1)

ML: g is Left Exponential ( 1σ e(x−µ)/σ , x ≤ µ)

MR: g is Right Exponential ( 1σ e−(x−µ)/σ , x ≥ µ)
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Difficulty: The models are not nested and have no common low

dimensional sufficient statistics; classical model selection would thus

typically rely on asymptotics.

Prior distribution: choose, for i = 1, . . . , 5,

P (Mi) =
1
q
= 1

5
;

utilize the objective prior πi(θi) = πi(µ, σ) =
1
σ
.

Objective improper priors (invariant) are o.k. for the common parameters

in situations having the same invariance structure, if the right-Haar

prior is used (Berger, Pericchi, and Varshavsky, 1998).

Marginal distributions, mN (x | M), for these models can then be

calculated in closed form.
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Here mN (x | M) =

∫ ∫ ∏n
i=1

[
1
σ
g
(
xi−µ
σ

)]
1
σ

dµ dσ.

For the five models, the marginals are

1. Normal: mN (x | MN ) =
Γ((n−1)/2)

(2 π)(n−1)/2
√
n (

∑
i(xi−x̄)2)

(n−1)/2

2. Uniform: mN (x | MU ) =
1

n (n−1)(x(n)−x(1))
n−1

3. Cauchy: mN (x | MC) is given in Spiegelhalter (1985).

4. Left Exponential: mN (x | ML) =
(n−2)!

nn(x(n)−x̄)n−1

5. Right Exponential: mN (x | MR) =
(n−2)!

nn(x̄−x(1))
n−1
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Consider four classic data sets:

• Darwin’s data (n = 15)

• Cavendish’s data (n = 29)

• Stigler’s Data Set 9 (n = 20)

• A randomly generated Cauchy sample (n = 14)
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The objective posterior probabilities of the five models, for each data set,

mN (x | M) =
mN (x | M)

mN (x | MN ) +mN (x|MU ) +mN (x|MC) +mN (x|ML) +mN (x|MR)
,

are as follows:

Data Models

set Normal Uniform Cauchy L. Exp. R. Exp.

Darwin .390 .056 .430 .124 .0001

Cavendish .986 .010 .004 4×10−8 .0006

Stigler 9 7×10−8 4×10−5 .994 .006 2×10−13

Cauchy 5×10−13 9×10−12 .9999 7×10−18 1×10−4
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III. Model Averaging
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Accounting for model uncertainty

• Selecting a single model and using it for inference

ignores model uncertainty, resulting in inferior inferences, and

considerable overstatements of accuracy.

• The Bayesian approach incorporates this uncertainty

by model averaging; if, say, inference concerning ξ is desired, it would

be based on

π(ξ | x) =
q∑

i=1

P (Mi | x) π(ξ | x ,Mi).

Note: ξ must have the same meaning across models.

• a useful link, with papers, software, URL’s about BMA

http://www.research.att.com/∼volinsky/bma.html
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Example: Vehicle emissions data from McDonald et. al. (1995)

Goal: From i.i.d. vehicle emission data X = (X1, . . . , Xn), one desires to

determine the probability that the vehicle type will meet regulatory

standards.

Traditional models for this type of data are Weibull and lognormal

distributions given, respectively, by

M1 : fW (x | β, γ) =
γ

β

(
x

β

)γ−1

exp

[
−
(
x

β

)γ]
M2 : fL(x | µ, σ2) =

1

x
√
2πσ2

exp

[
−(log x− µ)2

2σ2

]
.

Note that both distributions are in the location-scale family after

transforming to y = log x.
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Model Averaging Analysis:

• Assign each model prior probability 1/2.

• Because of the common location-scale invariance structures, assign the

right-Haar prior densities π(µ, σ) = 1/(σ) to the models after the

log-transformation (Berger, Pericchi and Varshavsky, 1998 Sankhyā).

• The posterior probabilities (and conditional frequentist error

probabilities) of the two models are then

P (M1 | x) = 1− P (M2 | x) = B(x)

1 +B(x)
,

B(X) =
Γ(n)nnπ(n−1)/2

Γ(n− 1/2)

∫ ∞

0

[
v

n

n∑
i=1

exp

(
yi − ȳ

syv

)]−n

dv,

where ȳ = 1
n

∑n
i=1 yi and s2y = 1

n

∑n
i=1(yi − ȳ)2.

• For the studied data set, P (M1 | x) = .712. Hence,

P (meeting standard) = .712 P (meeting standard | M1)

+.288 P (meeting standard | M2) .
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Model averaging most used for prediction:

Goal: Predict a future Y , given X

Optimal prediction is based on model averaging (cf, Draper, 1994). If

one of the Mi is indeed the true model (but unknown), the optimal

predictor is based on

m(y | x) =
k∑

i=1

P (Mi | x)mi(y | x,Mi) ,

where

mi(y | x,Mi) =

∫
fi(y | θi)πi(θi | x)dθi

is the predictive distribution when Mi is true.
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Alternate expression if Y = Xn+1 and x = (x1, x2, . . . , xn), marginal

density of (x, xn+1) is

m(x, xn+1) =

q∑
i=1

P (Mi)mi(x, xn+1)

Thus

m(xn+1 | x) =

∑q
i=1 P (Mi)mi(x, xn+1)∫ ∑q

i=1 P (Mi)mi(x, xn+1)dxn+1

=

∑q
i=1 P (Mi)mi(x, xn+1)∑q

i=1 P (Mi)mi(x)
.
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IV. Reasons for Adopting the Bayesian
Approach to Model Uncertainty
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Reason 1: Ease of interpretation

• Bayes factors ; odds

Posterior model probabilities ; direct interpretation

• In the location example and Darwin’s data, the posterior model

probabilities are mN (x) = .390, mU (x) = .056,

mC(x) = .430, m̄L(x) = .124, mR(x) = .0001,

Bayes factors are BNU = 6.96, BNC = .91, BNL = 3.15, BNR = 3900.

• Interpreting four (or 20) p-values is much harder.
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Reason 2: Prior information can be incorporated, if desired

• If the default report is mi(x), i = 1, . . . , q, then for any prior

probabilities

P (Mi | x) =
P (Mi)mi(x)∑q

j=1 P (Mj)mj(x)

Example: In the Darwin’s data, if symmetric models are twice as likely

as the non-symmetric, then

Pr(MN ) = Pr(MU ) = Pr(MC) = 1/4 and Pr(ML) = Pr(MR) = 1/8,

so that

Pr(MN | x) = .416, Pr(MU | x) = .06, Pr(MC | x) = .458,

Pr(ML | x) = .066, Pr(MR | x) = .00005.
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Reason 3: Consistency

A. If one of the Mi is true, then m̄i → 1 as n → ∞

B. If some other model, M∗, is true, m̄i → 1 for that model closest to M∗

in Kullback-Leibler divergence

(Berk, 1966, Dmochowski, 1994)

Reason 4: Ockham’s razor

Bayes Factors automatically seek parsimony; no adhoc penalties for model

complexity are needed. (Illustration and explanation in lecture 10.)
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Reason 5: Frequentist interpretation

In many important situations involving testing of M1 versus M2,

B12/(1 +B12) and 1/(1 +B12) are ‘optimal’ conditional frequentist error

probabilities of Type I and Type II, respectively. Indeed, Pr(H0 | data x)

is the frequentist type I error probability, conditional on observing data of

the same “strength of evidence” as the actual data x. (Classical

unconditional error probabilities make the mistake of reporting the error

averaged over data of very different strengths.)

See Sellke, Bayarri and Berger (2001) for discussion and earlier references.
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Reason 6: The Ability to Account for Model Uncertainty through Model

Averaging

• For non-Bayesians, it is highly problematical to perform inference from

a model based on the same data used to select the model.

– It is not legitimate to do so in the frequentist paradigm.

– It is very hard to determine how to ‘correct’ the inferences (and

known methods are often extremely conservative).

• Bayesian inference based on model averaging overcomes this problem.

• There is some controversy about Bayesian inference from a single

selected model.

– Inference internal to the model – e.g., parameter inference – is okay

(though not all agree).

– External inference, e.g. prediction, is on shakier grounds.

28



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

Reason 7: Generality of application

• Bayesian approach is viable for any number of models, regular or

irregular, nested or not, large or small sample sizes.

• Classical approach is most developed for only two models (hypotheses),

and typically requires at least one of: (i) nested models, (ii) standard

distributions, (iii) regular asymptotics.

• Example 1: In the location-scale example, there were 5 non-nested

models, with small sample sizes, irregular asymptotics, and no reduced

sufficient statistics.

• Example 2: Suppose the Xi are i.i.d from the N(θ, 1) density, where θ =

“mean effect of T1 - mean effect of T2.”

Standard Testing Formulation:

H0 : θ = 0 (no difference in treatments) vs. H1 : θ ̸= 0 (a difference exists)

A More Revealing Formulation:

H0 : θ = 0 (no difference) vs. H1 : θ < 0 ( T2 is better) vs. H2 : θ > 0 (

T1 is better)
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Reason 8: Standard Bayesian ‘ease of application’ motivations

1. In sequential scenarios, there is no need to ‘spend α’

for looks at the data; posterior probabilities are not affected by the

reason for stopping experimentation.

2. The distributions of known censoring variables are

not needed for Bayesian analysis.

3. Multiplicity problems can be addressed in a straightforward manner.

(Lecture 4)
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V. Challenges with the Bayesian Approach to
Model Uncertainty
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Difficulty 1: Inadequacy of common priors, such as (improper)

objective priors, vague proper priors, and conjugate priors.

As in hypothesis testing,

• improper priors can only be used for “common parameters” in models;

• vague proper priors are usually horrible!

The problem with conjugate priors:

Normal Example: Suppose X1, . . . , Xn are i.i.d. N(x | θ, σ2).

• The natural conjugate priors are

π1(σ
2) = 1/σ2; π2(θ | σ2) = N(θ | 0, σ2) and π2(σ

2) = 1/σ2.

• Bayes factor: B12 =
√
n+ 1

(
1+t2/(n+1)

1+t2

)n/2

, where t =
√
nx̄/s.

• Silly behavior, called ‘information inconsistency’:

as |t| → ∞, B12 → (n+ 1)−(n−1)/2 > 0

For instance: if n = 3, B12 → 1/4

if n = 5, B12 → 1/36
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Difficulty 2: Meaning of parameters

Parameters in different models typically have different meanings, so that

separate (proper) priors must be constructed for each model

The difficulty applies to both objective priors for model selection and

subjective priors.

Lindley: “Beware of the fallacy of Greek letters.”
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Example:

wrong way:
M1 : Y = β0 + β1X1 + σ ϵ

M2 : Y = β0 + β1X1 + β2X2 + σ ϵ , ϵ ∼ N(0, 1)

Use priors π(β0), π(β1), π(β2), and π(σ), independent of the model.

right way:
M1 : Y = β

(1)
0 + β

(1)
1 X1 + σ(1) ϵ

M2 : Y = β
(2)
0 + β

(2)
1 X1 + β

(2)
2 X2 + σ(2) ϵ .

Distinct Priors: π1(β
(1)
0 , β

(1)
1 , σ(1)) and

π2(β
(2)
0 , β

(2)
1 , σ(2))π2(β

(2)
2 | β(2)

0 , β
(2)
1 , σ(2)).

Example

• Predict fuel consumption Y from weight X1 and engine size X2.

Clearly β1 has a very different meaning under M1 and M2.

(Regressing Y on X1 alone produces larger β1 than regressing on

both, due to the high correlation between X1 and X2).
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Difficulty 3: Utilization of Subjective Priors for Model Uncertainty

Utilization of subjective priors faces the following challenges:

• There is usually a multitude of models, each having potentially many

unknown parameters.

• Parameters in different models that are denoted by the same Greek letter

usually have different meanings, so that separate elicitations would need to

be done in each model.

• Conjugate priors (for which most elicitation tools have been built) are

problematical.

Scenarios in which subjective elicitation can succeed include:

• Orthogonal problems where the variables have meaning independent of the

model.

• Problems with extensive variable exchangeability, where hierarchical

modeling can be utilized.

We will also see interesting possibilities involving inducing model priors

from a single elicited distribution.
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Difficulty 4: Computation

Computation of the needed marginal distributions (or their ratios) can be

very challenging in high dimensions.

The total number of models under consideration can be enormous (e.g., in

variable selection), so good search strategies are needed.

See Lecture 8.

Difficulty 5: Posterior Inference

When thousands (or millions) of models all have similarly high posterior

probability (as is common), how does one summarize the information

contained therein?

Model averaging summaries are needed, but summaries of what quantities?

See Lectures 8 and 10.
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Difficulty 6: Evaluating procedures

• There are are variety of criteria for evaluating approaches to model

uncertainty (see Lecture 5), but these are not widely appreciated.

– For instance, DIC is very widely used, but violates the most basic

criterion of model selection, namely consistency.

• Many procedures that are thought of as Bayesian (e.g., DIC) do not

behave at all like true Bayesian procedures

– We call such procedures pseudo-Bayesian (and do not discuss them);

they require external validation, having no Bayesian guarantees.

– In lecture 6 – dealing with data-driven methods for deriving priors –

the most important criterion for evaluation will be if the procedure

behaves, in some sense, like a true Bayesian procedure.

• Simulations are of limited usefulness for true Bayesian procedures, as

each will necessarily perform optimally for problems that reflect its

Bayesian assumptions.
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VI. Approaches to Prior Choice for Model
Uncertainty

• Use of ‘conventional priors’ (Lecture 5)

• Use of data-driven priors (Lecture 6)

• Prior from notions of ‘predictive matching’

• Inducing model priors from a single prior.
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Priors arising from Predictive Matching

Idea: If X∗ are observables of interest, the pair {Mi, πi} would yield the

marginal density:

mi(x
∗) =

∫
fi(x

∗ | θi)πi(θi)dθi .

{Mi, πi} is “predictively matched” to {Mj , πj} if mi(x
∗) ≈ mj(x

∗).

Note: X∗ is typically some small set of possible observations.

Approach 1. Predictive moment matching

choose πi(θi) and πj(θj) so mi(x
∗) and mj(x

∗) have equal moments

(Ibrahim and Laud,93,94,95, others . . . )

Approach 2. Use (improper) objective priors with mi(x
∗
0) = mj(x

∗
0) at

some specified point x∗
0 (Spiegelhalter and Smith, 1982, Ghosh, 1997)

Approach 3. Inducing priors by posterior mixing based on a common

marginal (‘EP’ priors). (Lecture 6.)
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Approach 4. Subjective Matching

• Subjectively elicit a predictive m(x∗), where x∗ is a minimal training

sample (MTS), typically the dimension of the largest model.

• Goal: for each Mi, find πi(θi) so that

m∗
i (x

∗) =

∫
fi(x

∗ | θi)πi(θi)dθi

is close to m(x∗), ∀i.

cool fact: Define π
(0)
i (θi | x∗) = πN

i (θi | x∗) for any objective prior

πN (such that the posterior exists) and

π
(l)
i (θi) =

∫
π
(l−1)
i (θi | x∗)m(x∗)dx∗ .

Then, as l → ∞, π
(l)
i converges to a π∗ such that the resulting m∗

i (x
∗)

is closest to m∗(x∗) in terms of Kullback-Leibler divergence

(Shyamalkumar, 1996).
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• The first step is the ‘biggest’ and is the EPPrior (Expected Posterior

Prior) with respect to m(x∗)

(Berger and Pérez, 2002), to be covered later.
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Inducing Model Priors from a Single Prior

• Specify a prior πL(βL) for the ‘largest’ model.

• Use this prior to induce priors on the other models. Possibilities include

– In variable selection, conditioning by setting variables to be removed to

zero. (Logically sound if variables are orthogonal)

– Marginalizing out the variables to be removed. (Not logically sound)

– Matching model parameters for other models with the parameters of the

largest model by, say, minimizing Kullback-Leibler divergence between

models, and then projecting πL(βL). (Probably best, but hard)

Example - Dirichlet: Suppose the largest model has prior

πL(p1, . . . , pm) ∼ Dirichlet(1, . . . , 1) (i.e., the uniform distribution on the

simplex). If other models have parameters (pi1 , . . . , pil),

• conditioning yields π(pi1 , . . . , pil , p
∗ | other pj = 0) = Dirichlet(1, . . . , 1),

where p∗ = 1−
∑l

j=1 pij ;

• marginalizing yields π(pi1 , . . . , pil , p
∗) = Dirichlet(1, . . . , 1,m− l) (too

concentrated at zero for (pi1 , . . . , pil)).
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Example. Posterior Model Probabilities for Variable Selection in

Probit Regression

(from CMU Case Studies VII, Viele et. al. case study)

Motivating example: Prosopagnosia (face blindness), is a condition

(usually developing after brain trauma) under which the individual cannot

easily distinguish between faces. A psychological study was conducted by

Tarr, Behrmann and Gauthier to address whether this extended to a

difficulty of distinguishing other objects, or was particular to faces.

The study considered 30 control subjects (C) and 2 subjects (S) diagnosed

as having prosopagnosia, and had them try to differentiate between similar

faces, similar ‘Greebles’ and similar ‘objects’ at varying levels of difficulty

and varying comparison time.
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Data:

C = Subject C

S = Subject S

G = Greebles

O = Object

D = Difficulty

B = Brief time

A = Images match or not



⇒ R = Response (answer correct or not).

All variables are binary. Sample size was n = 20, 083. {C=S=1} and

{G=O=1} are not possible combinations, so there are

3× 3× 2× 2× 2 = 72 possible covariates.
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Statistical modeling: For a specified covariate vector Xi, let yi and

ni − yi be the numbers of successes and failures among the responses with

that covariate vector, with probability of success pi assumed to follow the

probit regression model

pi = Φ(β1 +
∑72

j=2 Xijβj).

The full model likelihood (up to a fixed proportionality constant) is then

f(y | β) =
∏72

i=1 p
yi

i (1− pi)
ni−yi .

Goal: Select from among the 272 submodels which have some of the βj set

equal to zero. (Actually, only models with graphical structure were

considered, i.e., if an interaction term is in the model, all the lower order

effects must also be there.)
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Prior Choice: Conditionally inducing submodel priors from a full-model

prior

• A standard noninformative prior for p = (p1, p2, . . . , p72) is the uniform

prior, usable here since it is proper.

• Change of variables yields πL(β) is N72(0, (X
′X)−1), where

X ′ = (X ′
1,X

′
2, . . . ,X

′
72).

• Then πj(β(j) | β(−j) = 0) is Nkj (0, (X
′
(j)X(j))

−1), where β(j) is a

subvector of parameters of dimension kj and X(j) is the corresponding

design matrix.
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VII. Selecting a Single Model for Prediction
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Context: Prediction with Normal linear models

• Observe the n× 1 vector

y = Xβ + ϵ ;

where X is the n× k design matrix, β is the k × 1 vector of unknown

coefficients, and ϵ is N (0, σ2I).

• Choose from among submodels

Ml : y = Xl βl + ϵ ,

where l = (l1, l2, . . . , lk) is the model index, li being either 1 or 0 as

covariate xi is in or out of the model.
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Basics of Bayesian prediction

• The goal is to predict a future y∗ = x∗β + ϵ, using squared error loss

(y∗ − ŷ∗)2.

• Combining the data and prior yields, for all l,

– P (Ml | y), the posterior probability of model Ml;

– π∗
l (βl, σ | y), the posterior distribution of (βl, σ).

• The best predictor of y∗ is, via model averaging,

ȳ∗ = x∗ β̄ ≡ x∗
∑
l

P (Ml | y) β̃l ,

where β̃l is the posterior mean for β under Ml.

49



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

Selecting a single model

• Often a single model is desired for prediction.

• A common misperception is that the best single model is that with the

largest P (Ml | y);

– however, this is true if there are only two models;

– and it is true if X
′
X is diagonal, σ2 is known, and suitable priors

are used (Clyde and Parmigiani, 1996).

• The best single model will typically depend on x∗.

• An important case is when the future covariates are like the past

covariates, i.e., when E[(x∗)′x∗] = X
′
X.
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Posterior inclusion probabilities

The posterior inclusion probability for variable i is

pi ≡
∑

l : li=1

P (Ml |y),

i.e., the overall posterior probability that variable i is in the model.

These are of considerable independent interest

• as basic quantities of interest,

• as aids in searches of model space,

• in defining the median probability model.
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The (posterior) median probability model

If it exists, the median probability model, Ml∗ , is defined to be the model

consisting of those variables whose posterior inclusion probability is at least

1/2. Formally, l∗ is defined, coordinatewise, by

l∗i =

 1 if pi ≥ 1
2

0 otherwise.
(1)

Note: If computation is done by a model-jumping MCMC, the median

probability model consists of those coordinates that were present in over

half the iterations.
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Existence of the median probability model

The median probability model exists when the models under consideration

follow a graphical model structure, including

• when any subset of variables is allowed;

• the situation in which the allowed variables consist of main effects and

interactions, but a higher order interaction is allowed only if lower

order interactions are included;

• a sequence of nested models, such as arises in polynomial regression

and autoregressive time series.
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Example (Polynomial Regression): Model j is

y =
∑j

i=0 βi x
i + ϵ.

(Model) j 0 1 2 3 4 5 6

P (Mj | y) ∼ 0 0.06 0.22 0.29 0.38 0.05 ∼ 0

(Covariate) i 0 1 2 3 4 5 6

P (xi is in model | y) 1 1 0.94 0.72 0.43 0.05 0

Thus M3 is the median probability (optimal predictive) model, while M4 is

the maximum probability model.
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Three optimality theorems

Theorem 1. If (i) the models under consideration have graphical

structure; (ii) X
′
X is diagonal, and (iii) the posterior mean of βl is simply

the relevant coordinates of β̃ (the posterior mean in the full model), then

the best predictive model is the median probability model. Condition (iii)

is satisfied under any mix of

• noninformative priors for the βi;

• independent N (0, σ2λi) priors for the βi, with the λi given (objectively

or subjectively specified, or estimated via empirical Bayes) and any

prior for σ2.
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Corollary (Clyde and Parmigiani, 1996). If any submodel of the full model is

allowed, X
′
X is diagonal, N (0, σ2λi) priors are used for the βi, with the λi

given and σ2 known, and the prior probabilities of the models satisfy

P (Ml) =

k∏
i=1

(p0i )
li(1− p0i )

(1−li) ,

where p0i is the prior probability that variable xi is in the model, then the

optimal predictive model is that with highest posterior probability (which

is also the median probability model).
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Theorem 2. Suppose a sequence of nested linear models is under

consideration. If (i) prediction is desired at ‘future covariates like the past’

and (ii) the posterior mean under Ml satisfies β̃l = b β̂l, where β̂l is the

least squares estimate, then the best predictive model is the median

probability model.

Condition (ii) is satisfied if we use either

• noninformative priors for model parameters; or

• g-type Nkl
(0, c σ2 (X

′

lXl)
−1) priors, with the same constant c > 0 for

each model, and any prior for σ2.
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Theorem 3. Theorems 1 and 2 essentially remain true even if there are

non-orthogonal nuisance parameters (i.e., parameters common to all

models) that are assigned the usual noninformative priors.
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Nonparametric Regression

• yi = f(xi) + ϵi, i = 1, . . . , n, ϵi ∼ N(0, σ2).

• Represent f via a (orthonormal) series expansion

f(x) =

∞∑
j=1

βj ϕj(x).

• Base prior distribution: βi ∼ N(0, vi), with vi =
c
ia , where c is

unknown and a is specified.

• The model Mj , for j = 1, 2, . . . , n, is given by:

yi =

j∑
k=1

βk ϕk(xi) + ϵi, ϵi ∼ N(0, σ2).

• Choose equal prior probabilities for the models Mj , j = 1, 2, . . . n.

Within Mj , use the base prior to induce the prior distributions for

βj = (β1, . . . , βj).
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• For the data y = (y1, . . . , yn), compute P (Mj | y), the posterior

probability of model Mj , for j ≤ n.

• Within Mj , predict βj by its posterior mean, β̃j .
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Example 1. The Shibata Example

• f(x) = − log(1− x) for −1 < x < 1.

• Choose {ϕ1(x), ϕ2(x), . . .} to be the Chebyshev polynomials.

• Then βi = 2/i, so the ‘optimal’ choice of the prior variances would be

vi = 4/i2, i.e., c = 4 and A = 2.

• Measure the predictive capability of a model by expected squared error

loss relative to the true function (here known) – thus we use a

frequentist evaluation, as did Shibata.
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MaxPr MedPr ModAv BIC AIC

a = 1 0.99 [8] 0.89 [10] 0.84 1.14 [8] 1.09 [7]

a = 2 0.88 [10] 0.80 [16] 0.81 1.14 [8] 1.09 [7]

a = 3 0.88 [9] 0.84 [17] 0.85 1.14 [8] 1.09 [7]

Table 1: For n = 30 and σ2 = 1, the expected loss and average model size

for the maximum probability model (MaxPr), the Median Probability Model

(MedPr), Model Averaging (ModAv), and BIC and AIC, in the Shibata

example.
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MaxPr MedPr ModAv BIC AIC

a = 1 0.54 [14] 0.51 [19] 0.47 0.59 [11] 0.59 [13]

a = 2 0.47 [23] 0.43 [43] 0.44 0.59 [11] 0.59 [13]

a = 3 0.47 [22] 0.46 [45] 0.46 0.59 [11] 0.59 [13]

Table 2: For n = 100 and σ2 = 1, the expected loss and average model size

for the maximum probability model (MaxPr), the Median Probability Model

(MedPr), Model Averaging (ModAv), and BIC and AIC, in the Shibata

example.
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MaxPr MedPr ModAv BIC AIC

a = 1 0.34 [23] 0.33 [26] 0.30 0.41 [12] 0.38 [21]

a = 2 0.26 [42] 0.25 [51] 0.25 0.41 [12] 0.38 [21]

a = 3 0.29 [38] 0.29 [50] 0.29 0.41 [12] 0.38 [21]

Table 3: For n = 2000 and σ2 = 3, the expected loss and average model size

for the maximum probability model (MaxPr), the Median Probability Model

(MedPr), Model Averaging (ModAv), and BIC and AIC, in the Shibata

example.
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Comments

• AIC is better than BIC (as Shibata showed), but the true Bayesian

procedures are best.

• Model averaging is generally best (not obvious), followed closely by the

median probability model. The maximum probability model can be

considerably inferior.

• BIC is a very poor approximation to the Bayesian answers.

• The true Bayesian answers choose substantially larger models than

AIC (and then shrink towards 0).
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ANOVA

Many ANOVA problems, when written in linear model form, yield diagonal

X
′
X and any such problems will naturally fit under our theory. In

particular, this is true for any balanced ANOVA in which each factor has

only two levels. As an example, consider the full two-way ANOVA model

with interactions:

yijk = µ+ ai + bj + abij + ϵijk

with i = 1, 2, j = 1, 2, k = 1, 2, . . . ,K and ϵijk independent N(0, σ2), with

σ2 unknown. In linear model form, this leads to X
′
X = 4KI4.
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Possible modeling scenarios

We use the simplified notation M1011 instead of M(1,0,1,1), representing the

model having all parameters except a1.

Scenario 1 - All models with the constant µ: Thus the set of models under

consideration is {M1000,M1100,M1010,M1001,M1101,M1011,M1110,M1111}.

Scenario 2 - Interactions present only with main effects, and µ included:

The set of models under consideration here is

{M1000,M1100,M1010,M1110,M1111}. Note that this set of models has

graphical structure.
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Scenario 3 - An analogue of an unusual classical test: In classical ANOVA

testing, it is sometimes argued that one might be interested in testing for

no interaction effect followed by testing for the main effects, even if the

no-interaction test rejected. The four models that are under consideration

in this process, including the constant µ in all, are

{M1101,M1011,M1110,M1111}. This class of models does not have graphical

model structure and yet the median probability model is guaranteed to be

in the class.
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Example 2. Montgomery (1991, pp.271–274) considers the effects of the

concentration of a reactant and the amount of a catalyst on the yield in a

chemical process. The reactant concentration is factor A and has two

levels, 15% and 25%. The catalyst is factor B, with the two levels ‘one bag’

and ‘two bags’ of catalyst. The experiment was replicated three times and

the data are

treatment replicates

combination I II III

A low, B low 28 25 27

A high, B low 36 32 32

A low, B high 18 19 23

A high, B high 31 30 29
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For each modeling scenario, two Bayesian analyses were carried out, both

satisfying the earlier conditions so that the median probability model is

known to be the optimal predictive model.

• I. The reference prior π(µ, σ) ∝ 1
σ was used for the common

parameters, while the standard N(0, σ2) g-prior was used for a1, b1 and

ab11. In each scenario, the models under consideration were given equal

prior probabilities of being true.

• II. The g-prior was also used for the common µ.
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model posterior probability posterior expected loss

M1000 0.0009 237.21

M1100 0.0347 60.33

M1010 0.0009 177.85

M1110 0.6103 0.97

M1111 0.3532 3.05

Table 4: Scenario 2 – graphical models, prior I. The posterior inclusion

probabilities are p2 = 0.9982, p3 = 0.9644, and p4 = 0.3532; thus M1110 is

the median probability model.
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model posterior probability posterior expected loss

M1011 0.124 143.03

M1101 0.286 36.78

M1110 0.456 10.03

M1111 0.134 9.41

Table 5: Scenario 3 – unusual classical models, prior II. The posterior inclu-

sion probabilities are p2 = 0.876, p3 = 0.714, and p4 = 0.544; thus M1111 is

the median probability model.
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When does the median probability model fail? (Merlise Clyde)

• Suppose

– under consideration are the model with only a constant term, and

the models with a constant term and a single covariate

xi, i = 1, . . . , k, with k ≥ 3;

– the models have equal prior probability of 1
k+1 ;

– all covariates are nearly perfectly correlated, with each other and

with y.

• Then

– the posterior probability of the constant model will

be near zero, and that of each of the other models

will be approximately 1/k;

– thus the posterior inclusion probabilities will also be approximately

1/k < 1/2;

– so the median probability model is the constant model, which will

have poor predictive performance compared to any other model.
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A high correlation example where the theory does
not apply

Example: Consider Hald’s regression data (Draper and Smith, 1981),

consisting of n = 13 observations on a dependent variable y, with four

potential regressors: x1, x2, x3, x4. The full model is thus

y = c+ β1x1 + β2x2 + β3x3 + β4x4 + ϵ, ϵ ∼ N (0, σ2),

with σ2 unknown.
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• All models that include the constant term are considered. This

example does not formally satisfy the theory, since the models are not

nested and the conditions of Theorem 3 do not apply.

• Least squares estimates are used for parameters.

• Default posterior model probabilities, P (Ml|y), are computed using the

Encompassing Arithmetic Intrinsic Bayes Factor (Berger and Pericchi,

1996), together with equal prior model probabilities.

• Predictive risks, R(Ml), are computed.
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Model P (Ml|y) R(Ml)

c 0.000003 2652.44

c,1 0.000012 1207.04

c,2 0.000026 854.85

c,3 0.000002 1864.41

c,4 0.000058 838.20

c,1,2 0.275484 8.19

c,1,3 0.000006 1174.14

c,1,4 0.107798 29.73

Model P (Ml|y) R(Ml)

c,2,3 0.000229 353.72

c,2,4 0.000018 821.15

c,3,4 0.003785 118.59

c,1,2,3 0.170990 1.21

c,1,2,4 0.190720 0.18

c,1,3,4 0.159959 1.71

c,2,3,4 0.041323 20.42

c,1,2,3,4 0.049587 0.47
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• The posterior inclusion probabilities are

p1 =
∑
l:l1=1

P (Ml|y) = 0.95, p2 =
∑
l:l2=1

P (Ml|y) = 0.73

p3 =
∑
l:l3=1

P (Ml|y) = 0.43, p4 =
∑
l:l4=1

P (Ml|y) = 0.55.

• Thus the median probability model is {c, x1, x2, x4} which clearly

coincides with the optimal predictive model.

• Note that the risk of the maximum probability model {c, x1, x2} is

considerably higher than that of the median probability model.
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Conclusions

• The (posterior) median probability model will typically be the optimal

predictive model.

• The median probability model is typically easy to compute, requiring

only rough estimates of the posterior inclusion probabilities.

• The posterior inclusion probabilities are themselves quantities of basic

interest in model selection and searches of model space.
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