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The Problem

We have worked hard and have come with one model for the data

that we are pretty happy about:

M : X = {X1, . . . , Xn} | θ ∼ f(x | θ)

BUT what if I am wrong? The question:

is model O.K.? ↔ is observed data xobs compatible with model?

is a very old question in statistics. Can Bayesians provide an answer?

Model criticism vs model comparison. We want:

• Model check (no comparison) ; no alternatives

• Objective Bayes ; no subjective priors
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Why no alternatives?

• Model comparison is the Bayesian way: If one is uncertain

about model M, one should select a believable set of models

Mi and do model choice or BMA (or others, depending on

the utility function)

• Model criticism only applies when “M is our model”; one

thinks that MS and MA is likely to be too hard and offer

little improvement

• Having really no alternatives ; can’t reject M
If data compatible ; pat yourself in the back and

continue the analysis

If data incompatible ; do the hard work!

• Checking as a exploratory tool ; look for alternatives only if

needed
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Why objective Bayes?

• Most natural at exploratory stage

• Prior assessment might be (way!) too hard (and the effort wasted

if the model is not good)

• Most importantly, with a subjective, informative prior, model

checking can only check the combination of prior and model:

Subjective Bayes model criticism can not (and maybe

does not want to) separate inadequacy of model from

inadequacy of prior

• In ‘model criticism’ the general goal is to check the adequacy of

the data generating model f(x | θ)
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With no alternative models . . .

do data xobs looks like it should? are we “surprised” to see this xobs?

To investigate this question, choose:

1. a diagnostic statistic T = t(X ) to investigate incompatibility of

data with assumed (null) model. Compute tobs = t(xobs)

2. a (specified) distribution f(t) of T under the assumed model

3. a way to measure conflict between tobs and f(t)

• Different choices of 1,2,3 ; different model checks

• Concentrate on the optimal choice of f(t) for any choice of the

statistic T and any choice of measuring incompatibility

(whether formal measures of surprise or informal ‘checks’)
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... two words about T
We will not be concerned about choice of T in this talk, but

• choice of T is important

• Choice is often made on casual, intuitive manner, specially for

complex models,

• Often kind of ‘surrogate’ for alternatives; so if clear

alternative(s) in mind we recommend formal Bayesian analysis

• if choosing T too hard ; devote the effort to formulate the

alternative models

NOTE: if T is ancillary (or nearly so) ; it doesn’t matter how we

get rid of θ (or matters less)

If distribution of T depends on θ (complex models, T chosen

casually) ; which distribution f(t) is used becomes crucial
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... two words about measuring conflict

To measure compatibility between observed tobs and ‘null’ f(t):

• Likelihood-based measures, like the relative height of the density

f(t) at tobs (Relative Predictive Surprise in Berger 1985) a:

RPS =
f(tobs)

sup
t

f(t)
(we do not treat these in this talk)

• Tail-areas based measures, like the most popular p-values

p = Prf(t)(t(X) ≥ t(xobs))

which are the ones we will be considering

aFor other proposals of surprise indices see Weaver, 48; Good, 56, 83, 88;
Berger, 85; Evans, 97, 06; Bayarri and Berger, 97
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Whaaat???? p-values????

• yeap, we know ... we have been advising you again and again

not to use p-values ...

• relative height has a more Bayesian (and likelihood) flavour

• as ugly as they are, p-values have some advantages:

– easier to compute (and to MCMC)

– invariant under 1-1 transformations

– everyone is used to them

• so we stick to them, however:

– we have explored both (B&B, B&C, B&M)

– we know how to calibrate for proper interpretation

9



CBMS-MUM July 2012'

&

$

%

Note 1. Remember: luckily we can recalibrate for easy

interpretation: when p < e−1 compute

• B(p) = −e p log(p): interpret as the odds (or Bayes factor)

of H0 to (unspecified) H1

• α(p) = (1 + [−e p log(p)]−1)−1: interpret as (conditional)

frequentist Type I error probability

Note 2. big problem with p-values ; they exaggerate the evidence

against the null.

However, here this only means more, maybe unneeded work:

look for alternative models when maybe the original model was

the best of all entertained models ; not a serious mistake.

Note 3. the opposite, that is a procedure which fails to detect

seriously wrong models IS a serious, worrisome mistake in

model checking.
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recap: T = t(X) is a test statistics; Assume that large values of T

indicate incompatibility with M
T | θ ∼ f(t | θ) with θ unknown ; need to “get rid” of θ to

compute p-values, relative heights, ...

in this talk: Compute p = Prf(t){T ≥ tobs} with tobs = t(xobs)

Model ‘under suspicion’ if p small.

several possibilities to get to a completely specified distribution

f(t) (under M) to compute ‘measures of surprise’

focus: compare some few such ways through their respective

p-values, but message applies also to other measures of surprise.

important point in this talk is not so much p-values versus

‘likelihood-ratio’ type measures, but the distribution used (more

so with casually chosen T , like with informal graphical checks)
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finding f(t) free of θ

• want to ‘eliminate’ θ from f(t | θ) to produce a known f(t) for

computing the p-value p

• several ways to ‘eliminate’ the unknown θ

– plug-in p-value (pplug)

– similar p-value (psim)

– prior predictive p-value (pprior)

– posterior predictive p-value (ppost)

– partial posterior predictive p-value (pppost)

– conditional predictive p-value (pcpred)
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Normal example

• under the null, Xi ∼ N(0, σ2)

call s2 =
∑

(xi − x)2/n

• discrepancy statistic t(X) = |X| (mean)

X ∼ N(0, σ2/n)

• various p-values are

p = Pr{|X| > |xobs|}

• usual non-informative prior for σ2: π(σ2) ∝ 1/σ2
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plug-in p-value:

replace θ by some estimate θ̂, such as the MLE:

pplug = Prf(·; θ̂)(t(X) ≥ t(xobs))

• strengths

– simplicity

– intuitive appeal

• weakness

– failure to account for uncertainty in the estimation of θ

– double use of the data

Note: distinction between the plug-ing f(t; θ̂) = f(t | θ = θ̂(xobs))

and the conditional distribution f(t | θ̂, θ) which can depend on θ
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Normal example (cont.)

• pplug

– MLE σ̂2 = 1
n

∑n
i=1 x

2
i = s2 + x2 and

pplug = 2

[
1− Φ

( √
n |xobs|√

s2obs + x2
obs

)]

– but pplug −→ 2[1− Φ(
√
n)] (positive constant) as

|xobs|/sobs −→ ∞

– p-value will not go to zero , no matter how strong the

evidence ! !
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similar p-value:

condition on a sufficient statistic U , for θ, so that, by definition

f(x | u, θ) = f(x | u) is free of θ

psim = Prf(·|uobs)(t(X) ≥ t(xobs))

• strength

– based on a proper probability computation (desirable

properties)

• weaknesses

– suitable sufficient U typically does not exist

– choice of T is then typically forced (and might have poor

power)
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Normal example (cont.)

• psim

– sufficient statistic for σ2 ; V =
∑n

i=1 X
2
i = ||X||2.

– distribution of X given vobs = ||xobs||2 is uniform on

{x : ||x||2 = ||xobs||2}, and

psim = Pr

(
|X|

||xobs||
>

|xobs|
||xobs||

)
= Pr

(
|Z| > |xobs|

||xobs||

)
where Z ∼ uniform on {z : ||z||2 = 1}

– later ; psim = pppost = pcpred
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prior predictive p-value [Box, 1980]

integrate θ out w.r.t. the (proper) prior π(θ):

f(x) ≡ m(x) =

∫
f(x; θ)π(θ)dθ ,

pprior = Prm(·)(t(X) ≥ t(xobs))

• strengths

– based on a proper probability computation

– suggests a natural and simple T : t(x) = 1/m(x)

• weaknesses

– confounded by compatibility of data with prior

– improper objective priors cannot be used
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posterior predictive p-value: [Guttman, 67, Rubin, 84]

integrate θ out w.r.t. the posterior distribution

π(θ | xobs) ∝ f(xobs; θ)π(θ)

leading to

mpost(x | xobs) =

∫
f(x; θ)π(θ | xobs)dθ ,

ppost = Prmpost(·|xobs)(t(X) ≥ t(xobs))

( generalizations in Meng 94; Gelman, Carlin, Stern and Rubin 95; Gelman,

Meng and Stern 96)
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• strengths

– improper noninformative priors can be used

– mpost(x | xobs) more influenced by the model than by the

prior; for large n, π(θ | xobs) is concentrated at θ̂ so

ppost ≈ pplug

– easy to compute from MCMC outputs (which has make it

very popular)

• weaknesses

– “double use” of the data (which results in an unnatural

behavior)

∗ (1) to ‘train’ the improper π(θ) into π(θ | xobs)

∗ (2) to compute the tail area corresponding to

tobs = t(xobs) in resulting m(t | xobs)

– lacks a pure Bayesian interpretation
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Normal example (cont.)

• pprior cannot be computed (prior improper)

• ppost

– posterior distribution

π(σ2|xobs) = Ga−1(σ2 | n/2, n(s2 + x2)/2)

– posterior predictive of X

mpost(x|xobs) = tn(x | 0, 1
n
(s2obs + x2

obs))

– posterior predictive p-value

ppost = 2

[
1−Υn

( √
n xobs√

s2obs + x2
obs

)]
≈ pplug

– similarly to pplug, ppost −→ 2[1−Υn(
√
n)], a positive

constant, as |xobs|/sobs −→ ∞
21
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– when n = 4, ppost > 0.12 no matter how many standard

deviations xobs is from zero

– inadequacy of ppost (and pplug) directly traced to the double

use of the data

– the problem with pplug is less severe: pplug > 0.046 when

n = 4

22



CBMS-MUM July 2012'

&

$

%

partial posterior predictive p-value

idea: use information in xobs not in tobs to ‘train’ the, possibly

improper, π(θ)

• integrate θ w.r.t. partial posterior π(θ | xobs \ tobs)

m(t | xobs \ tobs) =

∫
f(t | θ)π(θ | xobs \ tobs) dθ

π(θ | xobs \ tobs) ∝ f(xobs | tobs, θ)π(θ) ∝
f(xobs | θ)
f(tobs | θ)

π(θ)

to produce (our proposal)

pppost = Prm(·|xobs\tobs)(t(X) ≥ t(xobs)

• Has strengths of ppost with no double use of data

also nice Bayesian justification (in terms of (m(t | u))
23
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conditional predictive p-values

idea: for model checking with improper priors, use ‘slices’ of m(x)

• For some conditioning statistic U = u(X), compute conditional

predictive p-value as follows:

– Integrate θ out with respect to the (assumed proper)

conditional posterior distribution

π(θ | u) ∝ f(u; θ)π(θ)

to get the u-conditional predictive distribution

m(t | u) =
∫

f(t | u; θ)π(θ | u)dθ,

– Compute the corresponding u-conditional predictive p-values

pcpred(u) = Prm(·|uobs)(T ≥ tobs)
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• the conditional predictive p-value pcpred

– is a particular case and our proposal

– choose the conditioning statistic U to be the conditional

MLE of θ in f(x | t, θ)

θ̂cMLE(x) = argmax f(x | t, θ) = argmax
f(x; θ)

f(t; θ)

or a one-to-one transformation; m(t | u) invariant to such

– so that pcpred = pcpred(θ̂cMLE)

• result: when T is conditionally independent of θ̂cMLE and

(T, θ̂cMLE) are jointly sufficient, then

pppost = pcpred
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Normal example (cont.)

• pcpred:

– conditional m.l.e.

f(x | t;σ2) ∝ f(x;σ2)

f(t; σ2)
∝ (σ2)−

n−1
2 exp{−ns2

2σ2
}

maximized at σ̂2
cMLE = ns2/(n− 1) ; U = S2

– conditional posterior

π(σ2 | s2) = Ga−1(σ2 | (n− 1)/2, ns2/2)

– conditional predictive distribution

m(x | s2obs) = tn−1(x | 0, 1

n− 1
s2obs)
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– conditional predictive p-value

pcpred = 2

[
1−Υn−1

(√
n− 1 xobs

sobs

)]
– perfectly satisfactory

– equals usual classical p-value ; true frequentist p-value

• pppost:

– T = X independent of U = σ̂2
cMLE ∝ S2

– (T, U) jointly sufficient

– partial posterior predictive p-value equals the conditional

predictive p-value,

pppost = pcpred = psim = pclassic
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What do we want in a p-value?

• usual frequentist requirement ; p = p(X) to be U [0, 1] under

the null, f(x; θ), for all θ

if not ; no common interpretation across models ; not very

useful

‘defining’ property of a p-value

[Meng, 94; Rubin, 96; Thompson, 97; Robins, 99; Robins, van der Vaart,
and Ventura, 99; De la Horra and Rodŕıguez, 97]

• exact uniformity is often impossible ; p-value should be U [0, 1]

under the null asymptotically (RVV, 99)
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• For Bayesians with subjectively chosen priors ; maybe more

natural U [0, 1] under m(x) ; U [0, 1] on average over θ (prior

predictive p-value) (Meng, 94)

• BUT preliminary model checking ; objective, usually improper

priors ; no average possible

• if p-value uniform under the null in the frequentist sense ;

marginally U [0, 1] under any proper prior distribution (strong

Bayesian property !! )
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• if p-value always either conservative or anti-conservative in a

frequentist sense ( RVV 1999 ) ; guaranteed to be conservative

or anti-conservative in a Bayesian sense, no matter what the

prior (not too good)

• Also, Bayesians ; reasonable conditional performance not just

unconditional uniformity (only few examples, no general results)

• other methods : power comparisons; decision-theoretic

evaluations of p-values (with alternatives )

(Schaafsma, Tolboom and Van Der Meulen 89; Blyth and Staudte 95;

Hwang, Casella, Robert, Wells and Farrell 92; Hwang and Pemantle 97;

Hwang and Yang 97; Thompson 97)
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A toy outliers example

• checking for outliers ; T = Y(1) = min{Y1, . . . , Yn} (lower tail)

or T = Y(n) = max{Y1, . . . , Yn} (upper tail)

• data: 10 observations generated from N(0,1)

– example 1: the min changed to a −8 , T = Y(1) :

-8, -1.27, -1.059, -0.986, -0.874, -0.204, 0.315, 0.42,

0.49, 2.457

– example 2: the max changed to a 8, T = Y(n) :

-1.28, -1.27, -1.059, -0.986, -0.874, -0.204, 0.315, 0.42,

0.49, 8

• compute plug-in, posterior and partial posterior p-values
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example 1 example 2

ppp 1.59 × 10−3 5.9 × 10−5

post 0.133 0.104

plug-in 0.030 0.018

remember: the outlier was 8 S.D. from the rest of the data
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Normal linear model example

• Y = (Y1, Y2, . . . , Yn)
t response

θ = (θ1, θ2, . . . , θk)
t regression coefficients

V covariables (full rank), ϵ errors

Y = Vθ + ϵ ϵ ∼ Nn(0, σ
2I) σ2 known.

• departure statistic T = wtY, with given w = (w1, w2, . . . , wn)
t

• π(θ) = 1 and π(θ | y) = Nk(θ | θ̂, σ2(VtV)
−1
)

where θ̂ = (VtV)
−1
Vty usual least squares estimate
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• Plug-in p-value

– pplug = Prf(t;θ̂)(T > tobs) = 1− Φ

(
tobs−wtV

ˆθ
σ
√

||w||2

)
– random pplug(Y) = 1− Φ

(√
wtBw
||w||2 Z

)
where B = I−V(VtV)−1Vt and Z ∼ N(0, 1)

– pplug(Y) ∼ U [0, 1] distribution only if Vtw = 0 (i.e., T is a

linear function of residuals)

– wtBw/||w||2 < 1, so pplug is always conservative (i.e., larger

than it should be - bad for model checking)
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• Posterior predictive p-value

– ppost = Prmpost(t|xobs)(T > tobs) = 1− Φ

(
tobs−wtV

ˆθ
σ
√
wtCw

)
– random ppost(Y) = 1− Φ

(√
wtBw
wtCw Z

)
where Z ∼ N(0, 1)

– ppost(Y) ∼ U [0, 1] only if Vtw = 0

– wtCw > ||w||2, so ppost is more conservative than pplug
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• Partial posterior predictive p-value

– π(θ | xobs\tobs) = Nk (θ | uobs, σ
2Σ) where

U = (VtHV)
−1

VtHY, Σ = (VtHV)
−1

, H =
[
I−wwt / ||w||2

]
pppost = 1− Φ

(
tobs −wtVuobs

σ
√

wt [I+VΣVt]w

)

– as a random p-value , pppost(Y) = 1− Φ(Z)

where Z ∼ N(0, 1) ; pppost is a ’valid’ p-value

• Conditional predictive p-value

– U maximizing f(y | tobs;θ) the one given before

U = (VtHV)
−1

VtHY

– Cov(T,U) = 0 ; T and U independent ; pcpred = pppost
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Bayesian Motivations

• U -conditional posterior predictive p-values ; positive features

of both pprior and ppost

– based on m(x) ; natural Bayesian meaning; if π(θ) proper

; m(t | u) conditional distribution

– with appropriate U ; reflect surprise in the model

– noninformative priors can be used, with π(θ | u) proper

– no double use of the data ; uobs to produce the posterior,

tobs to compute tail area (in the appropriate distribution)
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• key ; suitable choice of conditioning statistic U

Different possible choices of U in Bayarri and Berger, 97

(Related possibility: Evans, 97; also cross-validation as in Gelfand, Dey

and Chang, 92)

– want U to contain as much information about θ as possible

but not involve T

in the example,
∑

x2
i /n ; all information but involves t(x) = |x|.

Take u(x) = s2 =
∑

(xi − x)2/n ; information about σ2

independent of t(X)

– also u(x) same dimension as θ

– achieve all ; define U as conditional m.l.e. of θ, given

t(x) = t
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• partial posterior predictive p-value

– conditional predictive p-value appealing but maybe difficult

to compute

– directly use c f(x | t; θ)π(θ) to integrate out θ ; ppost

– partial predictive p-value very similar to conditional predictive

p-value. As a matter of fact, pcpred and pppost asymptotically

equivalent ( RVV, 99 )
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Frequentist motivations

• nice property ; asymptotic distribution of pcpred and pppost is

U [0, 1] for all θ ( RVV, 99) . . . and for small samples ?

• Theorem Let p(X) be any U -conditional predictive p-value. If

the distribution of p(X) does not depend on θ, then p(X) is a

frequentist p-value for all θ (extra conditions for improper π(θ))

• Obvious application ; U sufficient ; m(t|u) = f(t|u) and
U -conditional predictive p-value = frequentist similar p-value.

• Robert and Rousseau (2002) and Fraser and Rousseau (2008)

studied u-conditional p-values for U = MLE, including

asymptotic properties, higher order asymptotic and equivalence

with ancillary and (repeated) bootstrap p-values
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Exponential example

• X1, X2, . . . , Xn i.i.d. Ex(λ), with S =
∑n

i=1Xi

• T = X(1) ( lower tail )

• usual noninformative prior π(λ) = 1/λ

• pplug

– m.l.e. λ̂ = n/S and T ∼ Ex(nλ), so that

pplug = e−n2tobs/sobs

– conditionally unsatisfactory : for ntobs/sobs → 1 model is

clearly contraindicated yet pplug → e−n
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– for α > e−n,

Pr(pplug(X) ≤ α) =

(
1 +

logα

n

)n−1

so pplug(X) is not a frequentist p-value

– but it can be shown to be asymptotically

• psim

S is sufficient, X|s ∼ uniform on {X :
∑n

i=1Xi = s}

psim = Pr(T > tobs|sobs) =
(
1− ntobs

sobs

)(n−1)
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• ppost

– posterior distribution of λ is Ga(n, sobs)

– posterior predictive density of T is n2

sobs

(
sobs

nt+sobs

)n+1

– posterior predictive p-value

ppost = Prmpost(t|xobs)(T > tobs) =

(
1 +

ntobs
sobs

)−n

– conditional behavior not appropriate

ppost → 2−n > 0 as ntobs/sobs → 1

– distribution of ppost not U [0, 1]. For α > 2−n,

Pr(ppost(X) ≤ α) =
(
2− α−1/n

)n−1

even further from uniformity than pplug ! ! (can be shown to

be asymptotically U [0, 1])
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• pppost

– f(x | t;λ) ∝ λn−1 exp{−λ (
∑

xi − nt)}
– partial posterior for λ

π(λ | xobs\tobs) =
λn−2e−λ(sobs−ntobs)

Γ(n− 1)(sobs − ntobs)−(n−1)

– partial posterior predictive density is

m(t | xobs\tobs) =
n(n− 1)(sobs − ntobs)

n−1

(nt+ sobs − ntobs)n

– partial posterior p-value

pppost = Prm(t|xobs\tobs)(T > tobs) =

(
1− ntobs

sobs

)n−1

identical to the similar p-value
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– It can be shown that pppost → 0 as ntobs/sobs → 1

– also pppost is a frequentist p-value for all n

• pcpred

– conditional m.l.e. λ̂cMLE ∝
∑n

i=1Xi − nX1 = S − nT

– λ̂cMLE is independent of T ; pcpred = pppost

– derivation of pppost simpler than that of pcpred

– Pr(pppost(X) ≤ α) does not depend on λ (Theorem 1) ;

pcpred (and pppost and psim) frequentist p-value
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a curious coincidence

• in examples psim = pcpred = pppost, even though distributions on

completely different (conditional) spaces

• quite useful ; pppost easier to derive

• Theorem If f(x; θ) (continuous) scale exponential,

S = T + U sufficient

f(t, u; θ) = k θ αtγuα−γ−2 exp{−θ(t+ u)}

with usual noninformative prior, π(θ) = 1/θ

pcpred = pppost = psim

more results in Fraser and Rousseau (2008)
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A word about computations

• In general pplug the easiest, then ppost then pppost then pcpred.

• Computation of θ̂ and simulations from posterior predictive ;

standard.

• To simulate from f∗(t) =
∫
f(t | θ)π∗(θ) dθ :

– simulate θ from π∗(θ)

– simulate x from f(x | θ) and compute t = t(x ) (or the

p-value)

where π∗(θ) is the ppost or cpred posterior

• To simulate from π∗(θ) ; M-H (or M-H within Gibbs)
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partial posterior p-values

To simulate from π(θ | xobs \ tobs) ∝
π(θ | xobs)

f(tobs | θ)
• easiest proposal is posterior π(θ | xobs) ; often works, but not

when model and data are very incompatible (posterior and

partial posterior very distant)

• ’move’ (and mix) posterior: If θ∗ ∼ π(θ | xobs), compute

θ̃∗ = θ∗ + (θ̂cMLE − θ̂MLE)

θ̂cMLE = argmax f(x | t, θ) is conditional MLE

sometimes ; ‘mix’ with a U ∼ U(0, 1)

when convenient ; log-scale

• moving some factors of 1/f(tobs | θ) into π(θ | xobs) and

renormalizing also works very well when feasible (instead of

previous displacement)
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• resulting algorithm : Given θ̃(t) at time t,

1. generate θ∗ ∼ π(θ | xobs)

2. move θ∗ to θ̃∗

3. acceptance probability:

α = min

{
1,

π(θ̃∗ | xobs) f(tobs | θ̃(t)) π(θ(t) | xobs)

π(θ̃(t) | xobs) f(tobs | θ̃∗) π(θ∗ | xobs)

}

• added complication when f(t | θ) not close-form.
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u-conditional predictive p-values

For any conditioning statistic U (and in particular for our proposal,

U = conditional MLE), f(x | u, θ) is often not available in closed

form. General strategy:

• instead of generating from the required m(x | uobs) we generate

from m(x | |u− uobs| < δ)

• For small δ this is an approximation to generating from

m(x | uobs) (now called ABC)

• for not so small δ, it can be regarded as a ’less restrictive’

conditioning
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• Again, for a MH algorithm to simulate from the conditional

posterior, the easiest proposal is the usual posterior π(θ | xobs),

appropriately weighted and re-scaled (if possible) and proposals

‘translated’ as with pppp

• another possibility that works well is a Gibbs-type algorithm:

If at time t we have the simulations (x(t), θ(t)),

1. Generate θ(t+1) ∼ π(θ | x(t))

2. Generate x(t+1) ∼ f(x | θ(t))1{|u−uobs|<δ} (that is,

simulate repeatedly till |u− uobs| < δ
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Discrete sample spaces

• common analysis is to condition on U for which f(x|u; θ) does
not depend on θ (Fisher Exact Test)

• difficulties

– conditioning on U yields a severely constrained sample space

and serious conservatism of p-values in small or moderate

samples

– choice of T is essentially ‘forced’ on the user

– ‘conditional issues’ in extreme cases

pppost substantially overcomes these difficulties
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2 x 2 contingency tables

A1 A2 Totals

B1 X11 X12 X1+

B2 X21 X22 X2+

Totals X+1 X+2 n

• Case 1. One margin X+1 = n1, X+2 = n2 fixed ; null model of

homogeneity: the two binomial distributions have same success

probability θ

• Case 2. n fixed; null model is that classification by A and B is

independent
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Test of homogeneity

• null model: X11 and X12 are two independent binomial r.v.’s

with the same success probability θ

f(x11, x12 ; θ) =

 n1

x11

 n2

x12

 θx11+x12(1− θ)n−x11−x12

• Fisher exact test ; conditions on X1+ and uses T = X11

(textbook choice: essentially forced) resulting in the p-value:

pfet =
∑

f(t | xo1+) =
min{xo

1+,n1}∑
j=tobs

 n1

j

 n2

xo1+ − j

/ n

xo1+
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• for pppost ; use the same T as in FET: T = X11; this is only for

comparison and to judge the power of the methodology

(T = 1
n1
X11 − 1

n2
X22 would be more sensible unconditionally)

π(θ) = 1 ; partial posterior Beta(xo12 + 1, n2 − xo12 + 1)

pppost =

n1∑
j=tobs

n2 + 1

n1 + 1

 n1

j

 n2

xo12

/ n

xo12 + j

 .

(here pcpred = pppost)

• specific example n1 = 3 and n2 = 2 (quite extreme case) ;

conditioning on x1+ can result in dramatic reduction in the

sample space of T (which can have as little as 1 point, or as

much as 3); for pppost this sample space is always {0, 1, 2, 3}
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Distribution functions of p-values pfet (left) and pppost (right)
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Test of independence

• with θ =Pr(A1) and ξ =Pr(B1), the null model is

f(x; θ, ξ) =

(
n!

x11!x12!x21!x22!

)
θx+1(1− θ)x+2ξx1+(1− ξ)x2+

• Fisher exact test conditions on both marginals (U) and uses

T = X11 (forced), with conditional density

f(t | n, xo1+, xo+1) =

 xo1+

t

 n− xo1+

xo+1 − t

/ n

xo+1


leading to the p-value (same as previously)

pfet =

min{xo
1+,n1}∑

j=tobs

 n1

j

 n2

xo1+ − j

/ n

xo1+
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• pppost with same (non optimal) T as in FET

– with uniform independent priors for θ, ξ

pppost =

∫ 1

0

∫ 1

0
π(θ, ξ | xobs\tobs)

n∑
t=tobs

Bi(t | n, θξ) dθ dξ

where the partial posterior is

π(θ, ξ | xobs\tobs) ∝ θx
o
21(1−θ)x

o
+2ξx

o
12(1−ξ)x

o
2+(1−θξ)−(n−tobs)

– computation via importance sampling w.r.t.

1

2
Un(θ | 0, 1)Be(ξ | xo

12+1, xo
22+1)+

1

2
Be(θ | xo

21+1, xo
22+1)Un(ξ | 0, 1)

easy generation and highly efficient computationally
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• particular example

– n = 5

– support of pfet(X) is {0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9},
support of pppost(X) noticeably richer

– next figure gives cdfs of pfet(X) and pppost(X); if uniform,

these would be F (p) = p.
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• how large does n need to be for the p-values to be

approximately uniform?

– sample size needed for cdf of a p-value at 0.05 to be within

20% of 0.05

∗ when (θ, ξ) = (0.6, 0.5),

· pfet(X) ≈ U [0, 1] when n ≈ 500;

· pppost(X) ≈ U [0, 1] when n ≈ 10

∗ when (θ, ξ) = (0.3, 0.9),

· pfet(X) ≈ U [0, 1] when n ≈ 1200,

· pppost(X) ≈ U [0, 1] when n ≈ 110
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a bad choice: T ≈ sufficient

• apparent breakdown of both pfet and pppost for large values of

(θ, ξ)

• pfet ; hopelessly conservative ; never stating that data

incompatible with model

• pppost ; markedly anti-conservative

• At a purely intuitive level, the behavior of pppost is quite sensible

– we declare that large values of T means evidence against the

null model

– when (θ, ξ) both large, T = X11 is typically very large

(leading to rejection)

– pppost exhibits exactly this behavior
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• anti-conservative behavior of pppost arises because a very large T

provides a great deal of information about the parameters, but

little information about deviance from the model

• Most extreme example arises when T sufficient, a choice that is

nearly useless for model checking

• intuitively, choice of a sufficient statistic for T allocates all the

information from the data to learn about the unknown

parameters, leaving none to judge model inadequacy

• even in this extremely bad scenario, pppost seems to convey some

information, whereas pplug and ppost are useless
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example with T sufficient

• Xi ∼ Ber(θ), T =
∑

Xi, a sufficient statistic

• pppost = 1− tobs/(n+ 1)

– for large n, distribution of pppost tightly concentrates around

1− θ

– entirely natural behavior: large T ≈ large values of θ and

declared to be ‘surprising’

• pplug and ppost

– distributions of both concentrate tightly about 1/2 when n is

large for all θ

– provide completely useless answers here
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• the natural requirement for Bayesians ; require a p-value to be

uniform under the prior predictive distribution

– pppost is a p-value for a Bayesian ; ‘average’ of all the

distribution functions of pppost is uniform

– no Bayesian averages of the distribution functions of pplug (or

ppost) can be uniform
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CDF’s of p-values for sufficient T
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What about U ≈ sufficient in pcpred(u) ?

• Remember: for pcpred(u) the ‘distribution of reference’ was

f(t | u), with T measuring departure from the entertained model

• It was suggested that optimal choice of U for a given T would

be to have (T, U) ≈ sufficient, with U ’overlapping’ as little as

possible with T

• Our proposal was to use U = θ̂c the conditional MLE (that is,

the MLE of θ from f(x | T = tobs, θ) and the resulting p-value is

pcpred

• Robert and Rousseau (03) and Fraser and Rousseau (08)

suggest use of U = θ̂, the MLE of θ from f(x | θ)

• When θ̂ is sufficient (or nearly so), this makes any T ancillary in

the conditional distribution f(x | u, θ) (or nearly so), and hence
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p-values (for any T ) are approximately uniform

• Nothing is wrong with this except that Bayesian analysis is not

really required, in that the ’recentering’ of T is done through

conditioning on a sufficient statistic, that is, by computing the

(frequentist) psim

• We suspect (work in progress) that, for small n and when θ̂ is

not sufficient

– this choice might be too much conditioning (the discrete

sample space gives a hint),

– power might be an issue,

– p-values are further from Uniformity than those from our

original definition of pcpred
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Checking a Gamma distribution

• Entertained model: X1, . . . , Xn ∼ Ga(α, β)

f(x | α, β) ∝ xα−1e−x/β

with α shape and β scale parameters

• Use Jeffrey’s prior for θ = (α, β)

• Let the departure statistic be T = max(X1, . . . , Xn)

• Compare model checks carried in the following distributions:

– The posterior predictive

– The conditional predictive (U -conditional with U = the

conditional MLE of θ )

– The U -conditional, with U = the unconditional MLE of θ
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• a little simulated example

– generate 19 observations from a Ga(3, 3) and then add a

very extreme observation equal to 5. Ordered data is:

0.36, 0.37, 0.42, 0.55, 0.56, 0.62, 0.69, 0.74, 0.94,

0.95,1.28, 1.29, 1.39, 1.44, 1.52, 1.58, 1.85, 1.87, 1.87, 5

– simulate behavior under the null with 500 replicates for

n = 50
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posterior and u-conditional posterior distributions
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posterior and u-conditional predictive distributions
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distribution of p-values under the null
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Normal hierarchical models

Rest of talk: model is usual normal-normal hierarchical model with k

groups:

Xij |µi
i∼ N(µi, σ

2
i ) for i = 1, . . . , k, j = 1, . . . , ni

µi | ν, τ
i∼ N(ν, τ 2) for i = 1, . . . , k .

• use previous ways to get rid of (hyper)parameters (the prior for

the means is ‘agreed upon’, and hence part of the ‘model’).

Variances σ2
i assumed known sometimes

• Investigate different ‘nulls’
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Checking the ‘hypermean’

To fix ideas, begin with an easy one: testing a specified value for the

“great mean” (and sometimes it is even of interest)

• recall Xij | µi
i∼ N(µi, σ

2), µi | ν, τ
i∼ N(ν, τ2)

assume k groups, n observations per group, same σ2 (known)

• to test H0 : ν = ν0

• an intuitive T : T =
∑k

i=1 Xi·
k

• p-value: p = Prf(t){ |T − ν0| ≥ |tobs − ν0| }

• distribution of T : f(t | µ ) = N(t |
∑k

i=1 µi

k , σ2

k n)

integrate µ out (random effects) w.r.t. several distributions
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Empirical Bayes (plug-in)

let τ̂ the MLE from f(x | τ2) =
∫
f(x | µ )π(µ | τ2)dµ

Consider two EB distributions for µ :

– πEB(µ ) = π(µ | τ̂ 2) = π(µ | τ 2 = τ̂ 2)

producing mEB
prior(t) =

∫
f(t | µ )πEB(µ )dµ

– πEB(µ | x obs) ∝ f(x obs | µ )πEB(µ )

producing mEB
post(t) =

∫
f(t | µ )πEB(µ | x obs)dµ

Note use of πEB(µ | x obs) is clearly inappropriate, making an

obvious double use of the data. We’ll see that it exhibits

identical behavior to posterior predictive checks.
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Comparing both EB predictive m(t)

Prior is N
(
ν0,

1
k
(σ

2

n
+ τ̂ 2)

)
Posterior is N

(
(1− α)tobs + α ν0, α 1

k
(σ

2

n
+ 2 τ̂ 2)

)
with α → 0 as n → ∞ (or as τ̂ 2 → ∞)

assume now that tobs → ∞ (model very wrong)

mEB
prior(t) −→ N(ν0,∞)

mEB
post(t) −→ N(tobs,

2σ2

k n
)

inadequacy of mEB
post(t) for model checking is obvious, and hence

the p-value (or graphical checks, or whatever) will also be

seriously inadequate.
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posterior and partial posterior distributions

With prior π(τ 2) ∝ 1/τ , we use Gibbs to simulate from both

πpost(µ, τ
2 | xobs) and πppp(µ , τ 2 | xobs \ tobs)

• full conditional of τ 2 is common (n.c. χ2)

• full conditionals of µi are N

– means

post ; (1− α) x̄i + α ν0 (independent)

ppp ; (1− α∗) [x̄i + µ̄rest − x̄rest] + α∗ ν0

– 1/variances

post ; 1
σ2 +

1
τ2

ppp ; k−1
k

1
σ2 +

1
τ2
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Examples

• 4 simulated examples, k = 8 groups, n = 12 observations per

group

• in all of them, test H0 : ν = 0 (ν = mean of µi’s)

• Xij ∼ N(µi, 4)

– µi ∼ N(0, 1) in Example 1 (H0 true)

– µi ∼ N(1.5, 1) in Example 2 (H0 not true)

– µi ∼ N(2.5, 1) in Example 3 (H0 not true)

– µi ∼ N(2.5, 3) in Example 4 (H0 not true)
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Ex. 1 Ex. 2 Ex. 3 Ex. 4

ppp 0.859 0.008 0.000 0.005

EB prior 0.831 0.016 0.007 0.013

EB post 0.711 0.313 0.305 0.378

post 0.712 0.333 0.325 0.392
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Checking the second level

• recall

Xij |µi
i∼ N(µi, σ

2)

µi | ν, τ
i∼ N(ν, τ 2)

k groups, n observations per group, same σ2

• to test the second level of the hierarchy

• intuitive, easy to work with T = max{X̄1, . . . , X̄k}

• p-value: p = Prf(•){T ≥ tobs}
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• priors (prior for σ2 when unknown)

π(σ2) ∝ 1

σ2

π(ν | τ 2) ∝ 1

π(τ 2) ∝ 1

τ

• all distributions and p-values require MC or MCMC
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Example

Assume a simulated example with 5 groups, 8 observations per group

and

Xij |µi ∼ N(µi, 4) for i = 1, . . . , 5 j = 1, . . . , 8

µi ∼ N(1, 1) for i = 1, . . . , 4

µ5 ∼ N(5, 1)

sample means: 1.56, 0.64, 1.98, 0.01, 6.96

(The mean of the 5th group is 6.65 SD away from the others)

pppp pEB
prior pEB

post ppost

σ2 known .010 .130 .347 .409

σ2 unknown .015 .195 .371 .405
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behavior under the null

• Assume X1, X2, . . . , Xn i.i.d.f(x | θ) ; T ∼ f(t | θ)

• for known θ (or ancillary T )

p = p(X ) ∼ U(0, 1)

pretty convenient ; same meaning across problems

also ; defining property of a p-value

• for unknown θ ; p(X ) ∼ U(0, 1) for all θ usually not possible

; require p(X ) ∼ U(0, 1) asymptotically (RVV, 2000), and

approximately so for finite n
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• RESULT: for asymptotic normal T , the only p-value which is

asymptotically Un(0, 1) is pppp (RVV, 00). Also, it is most

powerful against Pittman’s alternatives. Also, pplug and ppost are

conservative.

• here T not asympt. N , and also want to exemplify behavior for

small/moderate n ; simulation

• pictures ; consider pplug(X ), ppost(X ), pppp(X ) as R.V. ;

simulate X under the null model, represent density of the p-values

; should be ≈ U(0, 1)

• null: Xij | µi ∼ N(µi, 4), µi ∼ N(0, 1)

k = 5, 15, 25 groups, 8 observations per group.
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behavior under alternatives

• “null model”: Xij |µi
i∼ N(µi, σ

2), µi | ν, τ
i∼ N(ν, τ 2)

• To explore behavior of pplug(X ), ppost(X ), pppp(X ) when

“null model” not true ; POWER

• concentrate in ‘wrong’ second level: simulate Xij from normal

and µi from non-normal

• First level: Xij | µi ∼ N(µi, 4)

n = 8 observations per group, k = 5, 10 groups

• second level: µi ∼ Gumbel(0, 2) (similar results with

exponential and log-normal, B&C)
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Pr(p− value ≤ α)

α 0.02 0.05 0.1 0.2

Normal-Gumbel

k=5

pppp 0.124 0.219 0.322 0.462

ppost 0.000 0.000 0.000 0.000

pEB
prior 0.000 0.000 0.000 0.268

k=10

pppp 0.208 0.314 0.425 0.550

ppost 0.000 0.000 0.000 0.003

pEB
prior 0.001 0.067 0.187 0.383
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Binomial-Beta model example: Bristol Royal Infirmary
Inquiry data

Real example: number ni of open-heart operations and the

corresponding number Yi of deaths of children under 1 year in 12

hospitals in England, (Spiegelhalter et al. 2002).

Yi | θi
i∼ Bin(θi, ni), i = 1, . . . , I,

π(θ | α, β) =
∏I

i=1 Beta(θi | α, β) ,

π(α, β) ∝ Jeffreys prior (Yang and Berger 87)
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• As departure statistics we use:

Max

{
yi
ni

}
andMin

{
yi
ni

}
• To approximate the ppp distribution we use the normal

approximation to the binomial.

pEB
prior pEB

post ppost pppp

Maximum 0.03 0.16 0.23 0.00

Minimum 0.67 0.56 0.62 0.64
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Other methods are reviewed and discussed in B&C

• Simulation-based model checking proposed by Dey, Gelfand,

Swartz and Vlachos, 98, as a computationally intense method

for model checking. It seems to work well in detecting the

incompatibility between model and the data, but it requires

proper priors.

• O’Hagan method (O’Hagan, 2003) is highly sensitive to the

prior chosen, and in fact it seems to be conservative with

non-informative priors.

• Marshall and Spiegelhalter’s conflict p-values (Marshall and

Spiegelhalter, 2003) seems to work well, produce as many

p-values as number of groups and multiplicity might be an issue.

• Proposals of Johnson, 2006; Evans and Moshonov, 06.
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... in conclussion

• Bayesian checks are better than plug-ing checks

• Posterior predictive check are extremely dangerous, unless T is

nearly ancillary. But in this case, plug-ing is recommended

because it is easier

• Posterior predictive checks are defended on grounds of simple

computations; plug-in checks are simpler and often better

• because of its familiarity, p-values, when calibrated, are useful

for model checking (but the message is the same for other,

formal or informal, checks, like graphical checks)
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• if a true p-value (U [0, 1]) is desired with uncentered T

– pppost (andpppred) are best in asymptotic and studied small

sample situations; they automatically centers T

– pplug is superior to ppost

• computationally,

– pplug and ppost are usually simplest

– pppost is easy to compute if f(t|θ) is available.

– pcpred is available with ABC techniques

– in discrete settings, pppost offers dramatic gains and avoids

excessive conservatism
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