Lecture 9 - Model Criticism

Susie Bayarri (U Valencia), with

Jim Berger , Maria-Eugenia Castellanos and Javier Morales Duke U, U Rey Juan Carlos, U Miguel Hernandez

> CBMS-MUM UC Santa Cruz July 23-27, 2012

The Problem

We have worked hard and have come with one model for the data that we are pretty happy about:

$$\mathcal{M}: \boldsymbol{X} = \{X_1, \dots, X_n\} \mid \boldsymbol{\theta} \sim f(\boldsymbol{x} \mid \boldsymbol{\theta})$$

BUT what if I am wrong? The question:

is model $O.K.? \leftrightarrow$ is observed data \boldsymbol{x}_{obs} compatible with model?

is a very old question in statistics. Can Bayesians provide an answer?

Model criticism vs model comparison. We want:

- Model check (no comparison) \rightsquigarrow no alternatives
- Objective Bayes \rightsquigarrow no subjective priors

Why no alternatives?

- Model comparison *is* the Bayesian way: If one is uncertain about model *M*, one should select a believable set of models *M_i* and do model choice or BMA (or others, depending on the utility function)
- Model criticism only applies when "*M* is our model"; one thinks that MS and MA is likely to be too hard and offer little improvement
- Having really no alternatives → can't reject M
 If data compatible → pat yourself in the back and continue the analysis
 If data incompatible → do the hard work!
- Checking as a exploratory tool → look for alternatives only if needed

Why objective Bayes?

- Most natural at exploratory stage
- Prior assessment might be (way!) too hard (and the effort wasted if the model is not good)
- Most importantly, with a subjective, informative prior, model checking can only check the combination of prior and model:

Subjective Bayes model criticism can not (and maybe does not want to) separate inadequacy of model from inadequacy of prior

• In 'model criticism' the general goal is to check the adequacy of the data generating model $f(x \mid \theta)$

With no alternative models ...

do data x_{obs} looks like it should? are we "surprised" to see this x_{obs} ? To investigate this question, choose:

- 1. a diagnostic statistic $T = t(\mathbf{X})$ to investigate incompatibility of data with assumed (null) model. Compute $t_{obs} = t(\mathbf{x}_{obs})$
- 2. a (specified) distribution f(t) of T under the assumed model
- 3. a way to measure conflict between t_{obs} and f(t)

- Different choices of $1,2,3 \rightarrow$ different model checks
- Concentrate on the optimal choice of *f(t)* for ANY choice of the statistic T and ANY choice of measuring incompatibility (whether formal measures of surprise or informal 'checks')

\dots two words about T

We will not be concerned about choice of T in this talk, but

- choice of T is important
- Choice is often made on casual, intuitive manner, specially for complex models,
- Often kind of 'surrogate' for alternatives; so if clear alternative(s) in mind we recommend formal Bayesian analysis
- if choosing T too hard → devote the effort to formulate the alternative models

NOTE: if T is ancillary (or nearly so) \rightsquigarrow it doesn't matter how we get rid of θ (or matters less)

If distribution of T depends on θ (complex models, T chosen casually) \rightsquigarrow which distribution f(t) is used becomes *crucial*

... two words about measuring conflict

To measure compatibility between observed t_{obs} and 'null' f(t):

• Likelihood-based measures, like the relative height of the density f(t) at t_{obs} (*Relative Predictive Surprise* in Berger 1985) ^a:

$$RPS = \frac{f(t_{obs})}{\sup_{t} f(t)}$$
 (we do not treat these in this talk)

• Tail-areas based measures, like the most popular *p*-values

$$p = Pr^{f(t)}(t(\boldsymbol{X}) \ge t(\boldsymbol{x}_{obs}))$$

which are the ones we will be considering

^aFor other proposals of surprise indices see Weaver, 48; Good, 56, 83, 88; Berger, 85; Evans, 97, 06; Bayarri and Berger, 97

relative height and p-values

Whaaat???? p-values????

- yeap, we know ... we have been advising you again and again not to use *p*-values ...
- relative height has a more Bayesian (and likelihood) flavour
- as ugly as they are, *p*-values have some advantages:
 - easier to compute (and to MCMC)
 - invariant under 1-1 transformations
 - everyone is used to them
- so we stick to them, however:
 - we have explored both (B&B, B&C, B&M)
 - we know how to calibrate for proper interpretation

Note 1. Remember: luckily we can recalibrate for easy interpretation: when $p < e^{-1}$ compute

- B(p) = -e p log(p): interpret as the odds (or Bayes factor) of H₀ to (unspecified) H₁
- α(p) = (1 + [-e p log(p)]⁻¹)⁻¹: interpret as (conditional) frequentist Type I error probability

Note 2. big problem with *p*-values \rightsquigarrow they exaggerate the evidence against the null.

However, here this only means more, maybe unneeded work: look for alternative models when maybe the original model was the best of all entertained models \sim not a serious mistake.

Note 3. the opposite, that is a procedure which fails to detect seriously wrong models IS a serious, worrisome mistake in model checking.

recap: $T = t(\mathbf{X})$ is a test statistics; Assume that large values of T indicate incompatibility with \mathcal{M}

 $T \mid \boldsymbol{\theta} \sim f(t \mid \boldsymbol{\theta})$ with $\boldsymbol{\theta}$ unknown \rightsquigarrow need to "get rid" of $\boldsymbol{\theta}$ to compute *p*-values, relative heights, ...

- in this talk: Compute $p = Pr^{f(t)} \{T \ge t_{obs}\}$ with $t_{obs} = t(\boldsymbol{x}_{obs})$ Model 'under suspicion' if p small.
- several possibilities to get to a completely specified distribution f(t) (under \mathcal{M}) to compute 'measures of surprise'

focus: compare some few such ways through their respective *p*-values, but message applies also to other measures of surprise.

important point in this talk is not so much p-values versus 'likelihood-ratio' type measures, but the distribution used (more so with casually chosen T, like with informal graphical checks)

finding f(t) free of θ

- want to 'eliminate' $\pmb{\theta}$ from $f(t\mid \pmb{\theta})$ to produce a known f(t) for computing the p-value p
- several ways to 'eliminate' the unknown heta
 - plug-in p-value (p_{plug})
 - similar p-value (p_{sim})
 - prior predictive p-value (p_{prior})
 - posterior predictive p-value (p_{post})
 - partial posterior predictive p-value (p_{post})
 - conditional predictive p-value (p_{cpred})

Normal example

- under the null, $X_i \sim N(0, \sigma^2)$ call $s^2 = \sum (x_i - \overline{x})^2/n$
- discrepancy statistic $t(\mathbf{X}) = |\overline{X}|$ (mean) $\overline{X} \sim N(0, \sigma^2/n)$
- various *p*-values are

$$p = \mathsf{P}r\{|\overline{X}| > |\overline{x}_{obs}|\}$$

- usual non-informative prior for $\sigma^2:~\pi(\sigma^2)\propto 1/\sigma^2$

plug-in *p*-value:

replace θ by some estimate $\hat{\theta}$, such as the MLE:

$$\mathbf{p_{plug}} = \mathsf{P}r^{f(\cdot;\,\hat{\theta})}(t(\mathbf{X}) \ge t(\mathbf{x}_{obs}))$$

- strengths
 - simplicity
 - intuitive appeal
- weakness
 - failure to account for uncertainty in the estimation of θ
 - double use of the data

Note: distinction between the plug-ing $f(t; \hat{\theta}) = f(t \mid \theta = \hat{\theta}(\boldsymbol{x}_{obs}))$ and the conditional distribution $f(t \mid \hat{\theta}, \theta)$ which can depend on θ

July 2012

Normal example (cont.)

• p_{plug}

- MLE
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 = s^2 + \overline{x}^2$$
 and

$$p_{plug} = 2 \left[1 - \Phi \left(\frac{\sqrt{n} |\overline{x}_{obs}|}{\sqrt{s_{obs}^2 + \overline{x}_{obs}^2}} \right) \right]$$

- but $p_{plug} \longrightarrow 2[1 \Phi(\sqrt{n})]$ (positive constant) as $|\overline{x}_{obs}|/s_{obs} \longrightarrow \infty$
- $-\ p$ -value will not go to zero , no matter how strong the evidence ! !

similar *p*-value:

condition on a sufficient statistic U, for θ , so that, by definition $f(\boldsymbol{x} \mid u, \theta) = f(\boldsymbol{x} \mid u)$ is free of θ

$$\mathbf{p_{sim}} = \mathsf{P}r^{f(\cdot|u_{obs})}(t(\mathbf{X}) \ge t(\mathbf{x}_{obs}))$$

- strength
 - based on a proper probability computation (desirable properties)
- weaknesses
 - suitable sufficient U typically does not exist
 - choice of T is then typically forced (and might have poor power)

Normal example (cont.)

- p_{sim}
 - sufficient statistic for $\sigma^2 \rightsquigarrow V = \sum_{i=1}^n X_i^2 = ||\mathbf{X}||^2$.
 - distribution of X given $v_{obs} = ||\mathbf{x}_{obs}||^2$ is uniform on $\{\mathbf{x} : ||\mathbf{x}||^2 = ||\mathbf{x}_{obs}||^2\}$, and

$$p_{sim} = Pr\left(\frac{|\overline{X}|}{||\mathbf{x}_{obs}||} > \frac{|\overline{x}_{obs}|}{||\mathbf{x}_{obs}||}\right) = Pr\left(|\overline{Z}| > \frac{|\overline{x}_{obs}|}{||\mathbf{x}_{obs}||}\right)$$

where $\mathbf{Z} \sim$ uniform on $\{\mathbf{z}: \; ||\mathbf{z}||^2 = 1\}$

- later $\rightsquigarrow p_{sim} = p_{ppost} = p_{cpred}$

prior predictive *p*-value [Box, 1980]

integrate θ out w.r.t. the (proper) prior $\pi(\theta)$:

$$f(\boldsymbol{x}) \equiv m(\boldsymbol{x}) = \int f(\boldsymbol{x}; \theta) \pi(\theta) d\theta,$$

$$\mathbf{p_{prior}} = \mathsf{P}r^{m(\cdot)}(t(\mathbf{X}) \ge t(\mathbf{x}_{obs}))$$

- strengths
 - based on a proper probability computation
 - suggests a natural and simple T: $t(\mathbf{x}) = 1/m(\mathbf{x})$
- weaknesses
 - confounded by compatibility of data with prior
 - improper objective priors cannot be used

posterior predictive p-value: [Guttman, 67, Rubin, 84]

integrate θ out w.r.t. the posterior distribution

$$\pi(\theta \mid \boldsymbol{x}_{obs}) \propto f(\boldsymbol{x}_{obs}; \theta) \pi(\theta)$$

leading to

$$m_{post}(\boldsymbol{x} \mid \boldsymbol{x}_{obs}) = \int f(\boldsymbol{x}; \theta) \pi(\theta \mid \boldsymbol{x}_{obs}) d\theta,$$
$$\mathbf{p}_{post} = \mathsf{P}r^{m_{post}(\cdot \mid \mathbf{x}_{obs})}(t(\mathbf{X}) \ge t(\mathbf{x}_{obs}))$$

(generalizations in Meng 94; Gelman, Carlin, Stern and Rubin 95; Gelman, Meng and Stern 96)

- strengths
 - improper noninformative priors can be used
 - $m_{post}(\boldsymbol{x} \mid \boldsymbol{x}_{obs})$ more influenced by the model than by the prior; for large n, $\pi(\theta \mid \boldsymbol{x}_{obs})$ is concentrated at $\hat{\theta}$ so $p_{post} \approx p_{plug}$
 - easy to compute from MCMC outputs (which has make it very popular)
- weaknesses
 - "double use" of the data (which results in an unnatural behavior)
 - * (1) to 'train' the improper $\pi(\theta)$ into $\pi(\theta \mid \boldsymbol{x}_{obs})$
 - * (2) to compute the tail area corresponding to $t_{obs} = t(\boldsymbol{x}_{obs})$ in resulting $m(t \mid \boldsymbol{x}_{obs})$
 - lacks a pure Bayesian interpretation

Normal example (cont.)

- p_{prior} cannot be computed (prior improper)
- p_{post}
 - posterior distribution $\pi(\sigma^2 | \mathbf{x}_{obs}) = Ga^{-1}(\sigma^2 | n/2, n(s^2 + \overline{x}^2)/2)$
 - posterior predictive of \overline{X}

 $m_{post}(\overline{x}|\mathbf{x}_{obs}) = t_n(\overline{x} \mid 0, \ \frac{1}{n}(s_{obs}^2 + \overline{x}_{obs}^2))$

posterior predictive *p*-value

$$p_{post} = 2 \left[1 - \Upsilon_n \left(\frac{\sqrt{n} \ \overline{x}_{obs}}{\sqrt{s_{obs}^2 + \overline{x}_{obs}^2}} \right) \right] \approx p_{plug}$$

- similarly to p_{plug} , $p_{post} \longrightarrow 2[1 - \Upsilon_n(\sqrt{n})]$, a positive constant, as $|\overline{x}_{obs}|/s_{obs} \longrightarrow \infty$

- when n = 4, $p_{post} > 0.12$ no matter how many standard deviations \overline{x}_{obs} is from zero
- inadequacy of p_{post} (and p_{plug}) directly traced to the double use of the data
- the problem with p_{plug} is less severe: $p_{plug} > 0.046$ when n=4

partial posterior predictive p-value

idea: use information in x_{obs} NOT in t_{obs} to 'train' the, possibly improper, $\pi(\theta)$

• integrate θ w.r.t. partial posterior $\pi(\theta \mid \boldsymbol{x}_{obs} \setminus t_{obs})$

$$m(t \mid \boldsymbol{x}_{obs} \setminus t_{obs}) = \int f(t \mid \theta) \pi(\theta \mid \boldsymbol{x}_{obs} \setminus t_{obs}) d\theta$$

$$\pi(\theta \mid \boldsymbol{x}_{obs} \setminus t_{obs}) \propto f(\boldsymbol{x}_{obs} \mid t_{obs}, \theta) \pi(\theta) \propto \frac{f(\boldsymbol{x}_{obs} \mid \theta)}{f(t_{obs} \mid \theta)} \pi(\theta)$$

to produce (our proposal)

$$\mathbf{p_{ppost}} = \mathsf{P}r^{m(\cdot|x_{obs}\setminus t_{obs})}(t(\boldsymbol{X}) \ge t(\boldsymbol{x}_{obs})$$

• Has strengths of p_{post} with no double use of data also nice Bayesian justification (in terms of $(m(t \mid u))$)

conditional predictive *p*-values

idea: for model checking with improper priors, use 'slices' of $m(\boldsymbol{x})$

- For some conditioning statistic $U = u(\mathbf{X})$, compute conditional predictive *p*-value as follows:
 - Integrate θ out with respect to the (assumed proper) conditional posterior distribution

 $\pi(\theta \mid u) \propto f(u;\theta)\pi(\theta)$

to get the u-conditional predictive distribution

$$m(t \mid u) = \int f(t \mid u; \theta) \pi(\theta \mid u) d\theta,$$

Compute the corresponding u-conditional predictive p-values

$$\mathbf{p_{cpred}(u)} = \mathsf{P}r^{m(\cdot|u_{obs})}(T \ge t_{obs})$$

- the conditional predictive p-value p_{cpred}
 - is a particular case and our proposal
 - choose the conditioning statistic U to be the conditional MLE of θ in $f(\pmb{x} \mid t, \theta)$

$$\hat{\theta}_{cMLE}(\boldsymbol{x}) = \arg\max f(\boldsymbol{x} \mid t, \theta) = \arg\max \frac{f(\boldsymbol{x}; \theta)}{f(t; \theta)}$$

or a one-to-one transformation; $m(t \mid u)$ invariant to such

- so that $\mathbf{p_{cpred}} = p_{cpred(\hat{\theta}_{cMLE})}$
- **RESULT:** when T is conditionally independent of $\hat{\theta}_{cMLE}$ and $(T, \hat{\theta}_{cMLE})$ are jointly sufficient, then

$$p_{ppost} = p_{cpred}$$

July 2012

Normal example (cont.)

- p_{cpred}:
 - conditional m.l.e.

$$f(\boldsymbol{x} \mid t; \sigma^2) \propto \frac{f(\boldsymbol{x}; \sigma^2)}{f(t; \sigma^2)} \propto (\sigma^2)^{-\frac{n-1}{2}} \exp\{-\frac{ns^2}{2\sigma^2}\}$$

maximized at $\hat{\sigma}_{cMLE}^2 = n s^2/(n-1) \leadsto U = S^2$

- conditional posterior

$$\pi(\sigma^2 \mid s^2) = Ga^{-1}(\sigma^2 \mid (n-1)/2, ns^2/2)$$

- conditional predictive distribution

$$m(\overline{x} \mid s_{obs}^2) = t_{n-1}(\overline{x} \mid 0, \ \frac{1}{n-1} s_{obs}^2)$$

- conditional predictive p-value

$$p_{cpred} = 2 \left[1 - \Upsilon_{n-1} \left(\frac{\sqrt{n-1} \ \overline{x}_{obs}}{s_{obs}} \right) \right]$$

- perfectly satisfactory
- equals usual classical $p\text{-value} \leadsto$ true frequentist p-value
- p_{ppost}:

$$- \ T = \overline{X}$$
 independent of $U = \hat{\sigma}_{cMLE}^2 \propto S^2$

- (T, U) jointly sufficient
- partial posterior predictive p-value equals the conditional predictive p-value,

$$p_{ppost} = p_{cpred} = p_{sim} = p_{classic}$$

What do we want in a p-value?

• usual frequentist requirement $\rightsquigarrow p = p(X)$ to be U[0,1] under the null, $f(x; \theta)$, for all θ

if not \rightsquigarrow no common interpretation across models \rightsquigarrow not very useful

```
'defining' property of a p-value
```

[Meng, 94; Rubin, 96; Thompson, 97; Robins, 99; Robins, van der Vaart, and Ventura, 99; De la Horra and Rodríguez, 97]

• exact uniformity is often impossible $\rightsquigarrow p$ -value should be U[0,1]under the null asymptotically (RVV, 99)

- For Bayesians with subjectively chosen priors → maybe more natural U[0,1] under m(x) → U[0,1] on average over θ (prior predictive p-value) (Meng, 94)
- BUT preliminary model checking → objective, usually improper priors → no average possible
- if p-value uniform under the null in the frequentist sense $\sim \rightarrow$ marginally U[0,1] under any proper prior distribution (strong Bayesian property !!)

- if *p*-value always either conservative or anti-conservative in a frequentist sense (RVV 1999) → guaranteed to be conservative or anti-conservative in a Bayesian sense, no matter what the prior (not too good)
- Also, Bayesians ~> reasonable conditional performance not just unconditional uniformity (only few examples, no general results)
- other methods : power comparisons; decision-theoretic evaluations of *p*-values (with alternatives) (Schaafsma, Tolboom and Van Der Meulen 89; Blyth and Staudte 95; Hwang, Casella, Robert, Wells and Farrell 92; Hwang and Pemantle 97; Hwang and Yang 97; Thompson 97)

A toy outliers example

- checking for outliers $\rightsquigarrow T = Y_{(1)} = \min\{Y_1, \dots, Y_n\}$ (lower tail) or $T = Y_{(n)} = \max\{Y_1, \dots, Y_n\}$ (upper tail)
- data: 10 observations generated from N(0, 1)
 - example 1: the min changed to a -8 , $T = Y_{(1)}$: -8, -1.27, -1.059, -0.986, -0.874, -0.204, 0.315, 0.42, 0.49, 2.457
 - example 2: the max changed to a 8, $T = Y_{(n)}$: -1.28, -1.27, -1.059, -0.986, -0.874, -0.204, 0.315, 0.42, 0.49, 8
- compute plug-in, posterior and partial posterior *p*-values

	example 1	example 2
ррр	1.59 × 10^{-3}	5.9×10^{-5}
post	0.133	0.104
plug-in	0.030	0.018

remember: the outlier was 8 S.D. from the rest of the data

Normal linear model example

•
$$\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^t$$
 response
 $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k)^t$ regression coefficients
 \mathbf{V} covariables (full rank), $\boldsymbol{\epsilon}$ errors

$$\mathbf{Y} = \mathbf{V}\boldsymbol{\theta} + \boldsymbol{\epsilon}$$
 $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}) \sigma^2$ known.

• departure statistic $T = \mathbf{w}^{t} \mathbf{Y}$, with given $\mathbf{w} = (w_1, w_2, \dots, w_n)^{t}$

•
$$\pi(\boldsymbol{\theta}) = 1$$
 and $\pi(\boldsymbol{\theta} \mid \mathbf{y}) = N_k(\boldsymbol{\theta} \mid \hat{\boldsymbol{\theta}}, \sigma^2(\mathbf{V^tV})^{-1})$
where $\hat{\boldsymbol{\theta}} = (\mathbf{V^tV})^{-1}\mathbf{V^ty}$ usual least squares estimate

• Plug-in p-value

$$- p_{plug} = \mathsf{P}r^{f(t;\hat{\theta})}(T > t_{obs}) = 1 - \Phi\left(\frac{t_{obs} - \mathbf{w}^{\mathsf{t}} \mathbf{V}\hat{\theta}}{\sigma\sqrt{||\mathbf{w}||^2}}\right)$$

- random
$$p_{plug}(\mathbf{Y}) = 1 - \Phi\left(\sqrt{\frac{\mathbf{w^t} \mathbf{B} \mathbf{w}}{||\mathbf{w}||^2}} \ Z\right)$$

where $\mathbf{B} = \mathbf{I} - \mathbf{V} (\mathbf{V^t} \mathbf{V})^{-1} \mathbf{V^t}$ and $Z \sim N(0,1)$

- $p_{plug}(\mathbf{Y}) \sim U[0, 1]$ distribution only if $\mathbf{V}^{\mathbf{t}}\mathbf{w} = 0$ (i.e., T is a linear function of residuals)
- $\mathbf{w^t B w}/||\mathbf{w}||^2 < 1$, so p_{plug} is always conservative (i.e., larger than it should be bad for model checking)

• Posterior predictive p-value

$$- p_{post} = \mathsf{P}r^{m_{post}(t|\mathbf{x}_{obs})}(T > t_{obs}) = 1 - \Phi\left(\frac{t_{obs} - \mathbf{w}^{\mathsf{t}} \mathbf{V}\hat{\boldsymbol{\theta}}}{\sigma\sqrt{\mathbf{w}^{\mathsf{t}} \mathbf{C} \mathbf{w}}}\right)$$

- random
$$p_{post}(\mathbf{Y}) = 1 - \Phi\left(\sqrt{\frac{\mathbf{w^t} \mathbf{B} \mathbf{w}}{\mathbf{w^t} \mathbf{C} \mathbf{w}}} \ Z\right)$$

where $Z \sim N(0, 1)$

$$- p_{post}(\mathbf{Y}) \sim U[0,1]$$
 only if $\mathbf{V^t}\mathbf{w} = \mathbf{0}$

 $- \mathbf{w}^{t} \mathbf{C} \mathbf{w} > ||\mathbf{w}||^{2}$, so p_{post} is more conservative than p_{plug}

- Partial posterior predictive p-value $-\pi(\boldsymbol{\theta} \mid \mathbf{x}_{obs} \setminus t_{obs}) = N_k(\boldsymbol{\theta} \mid \mathbf{u}_{obs}, \sigma^2 \boldsymbol{\Sigma}) \quad \text{where}$ $\mathbf{U} = (\mathbf{V}^t \mathbf{H} \mathbf{V})^{-1} \mathbf{V}^t \mathbf{H} \mathbf{Y}, \ \boldsymbol{\Sigma} = (\mathbf{V}^t \mathbf{H} \mathbf{V})^{-1}, \ \mathbf{H} = [\mathbf{I} - \mathbf{w} \mathbf{w}^t \ / \ ||\mathbf{w}||^2]$ $p_{ppost} = 1 - \Phi \left(\frac{t_{obs} - \mathbf{w}^t \mathbf{V} \mathbf{u}_{obs}}{\sigma \sqrt{\mathbf{w}^t [\mathbf{I} + \mathbf{V} \boldsymbol{\Sigma} \mathbf{V}^t] \mathbf{w}}} \right)$
 - as a random *p*-value, $p_{ppost}(\mathbf{Y}) = 1 \Phi(Z)$ where $Z \sim N(0, 1) \rightsquigarrow p_{ppost}$ is a 'valid' *p*-value
- Conditional predictive p-value
 - U maximizing $f(\mathbf{y} \mid t_{obs}; \boldsymbol{\theta})$ the one given before $\mathbf{U} = (\mathbf{V^t} \mathbf{H} \mathbf{V})^{-1} \mathbf{V^t} \mathbf{H} \mathbf{Y}$
 - $\operatorname{Cov}(\mathbf{T}, \mathbf{U}) = \mathbf{0} \rightsquigarrow T \text{ and } U \text{ independent } \rightsquigarrow p_{cpred} = p_{ppost}$
Bayesian Motivations

- U-conditional posterior predictive $p\text{-values} \rightsquigarrow \text{positive features}$ of both p_{prior} and p_{post}
 - based on $m(\mathbf{x}) \rightsquigarrow$ natural Bayesian meaning; if $\pi(\theta)$ proper $\rightsquigarrow m(t \mid u)$ conditional distribution
 - with appropriate $U \leadsto$ reflect surprise in the model
 - noninformative priors can be used, with $\pi(\theta \mid u)$ proper
 - no double use of the data $\rightsquigarrow u_{obs}$ to produce the posterior, t_{obs} to compute tail area (in the appropriate distribution)

- key → suitable choice of conditioning statistic U
 Different possible choices of U in Bayarri and Berger, 97
 (Related possibility: Evans, 97; also cross-validation as in Gelfand, Dey and Chang, 92)
 - want U to contain as much information about θ as possible but not involve T

in the example, $\sum x_i^2/n \rightsquigarrow$ all information but involves $t(\mathbf{x}) = |\overline{x}|$. Take $u(\mathbf{x}) = s^2 = \sum (x_i - \overline{x})^2/n \rightsquigarrow$ information about σ^2 independent of $t(\mathbf{X})$

- also $u(\mathbf{x})$ same dimension as θ
- achieve all \rightsquigarrow define U as conditional m.l.e. of θ , given $t(\mathbf{x}) = t$

- partial posterior predictive p-value
 - conditional predictive *p*-value appealing but maybe difficult to compute
 - directly use $c f(\mathbf{x} \mid t; \theta) \pi(\theta)$ to integrate out $\theta \rightsquigarrow p_{post}$
 - partial predictive p-value very similar to conditional predictive p-value. As a matter of fact, p_{cpred} and p_{ppost} asymptotically equivalent (RVV, 99)

Frequentist motivations

- nice property \rightarrow asymptotic distribution of p_{cpred} and p_{ppost} is U[0,1] for all θ (RVV, 99) ... and for small samples ?
- THEOREM Let $p(\mathbf{X})$ be any U-conditional predictive p-value. If the distribution of $p(\mathbf{X})$ does not depend on θ , then $p(\mathbf{X})$ is a frequentist p-value for all θ (extra conditions for improper $\pi(\theta)$)
- Obvious application $\rightsquigarrow U$ sufficient $\rightsquigarrow m(t|u) = f(t|u)$ and U-conditional predictive p-value = frequentist similar p-value.
- Robert and Rousseau (2002) and Fraser and Rousseau (2008) studied *u*-conditional *p*-values for U = MLE, including asymptotic properties, higher order asymptotic and equivalence with ancillary and (repeated) bootstrap p-values

Exponential example

- X_1, X_2, \ldots, X_n i.i.d. $Ex(\lambda)$, with $S = \sum_{i=1}^n X_i$
- $T = X_{(1)}$ (lower tail)
- usual noninformative prior $\pi(\lambda)=1/\lambda$
- p_{plug}
 - m.l.e. $\hat{\lambda} = n/S$ and $T \sim Ex(n\lambda)$, so that

$$p_{plug} = e^{-n^2 t_{obs}/s_{obs}}$$

- conditionally unsatisfactory : for $nt_{obs}/s_{obs} \rightarrow 1$ model is clearly contraindicated yet $p_{plug} \rightarrow e^{-n}$

- for
$$\alpha > e^{-n}$$

$$\Pr(p_{plug}(\mathbf{X}) \le \alpha) = \left(1 + \frac{\log \alpha}{n}\right)^{n-1}$$

so $p_{plug}(\mathbf{X})$ is not a frequentist *p*-value

- but it can be shown to be asymptotically

• p_{sim}

S is sufficient, $\mathbf{X}|s \sim \text{uniform on } \{\mathbf{X}: \sum_{i=1}^{n} X_i = s\}$

$$p_{sim} = \mathsf{P}r(T > t_{obs}|s_{obs}) = \left(1 - \frac{nt_{obs}}{s_{obs}}\right)^{(n-1)}$$

• p_{post}

- posterior distribution of λ is $Ga(n, s_{obs})$

- posterior predictive density of T is $\frac{n^2}{s_{obs}} \left(\frac{s_{obs}}{nt+s_{obs}}\right)^{n+1}$
- posterior predictive p-value

$$p_{post} = \mathsf{P}r^{m_{post}(t|\mathbf{x}_{obs})}(T > t_{obs}) = \left(1 + \frac{nt_{obs}}{s_{obs}}\right)^{-n}$$

- conditional behavior not appropriate

$$p_{post} \rightarrow 2^{-n} > 0$$
 as $nt_{obs}/s_{obs} \rightarrow 1$

- distribution of p_{post} not U[0,1]. For $\alpha > 2^{-n}$, $\Pr(p_{post}(\mathbf{X}) \le \alpha) = \left(2 - \alpha^{-1/n}\right)^{n-1}$

even further from uniformity than p_{plug} ! ! (can be shown to be asymptotically U[0,1])

CBMS-MUM

CBMS-MUM

• p_{ppost}

$$- f(\mathbf{x} \mid t; \lambda) \propto \lambda^{n-1} \exp\{-\lambda (\sum x_i - nt)\}$$

- partial posterior for λ

$$\pi(\lambda \mid \mathbf{x}_{obs} \setminus t_{obs}) = \frac{\lambda^{n-2} e^{-\lambda(s_{obs} - nt_{obs})}}{\Gamma(n-1)(s_{obs} - nt_{obs})^{-(n-1)}}$$

- partial posterior predictive density is

$$m(t \mid \mathbf{x}_{obs} \setminus t_{obs}) = \frac{n(n-1)(s_{obs} - nt_{obs})^{n-1}}{(nt + s_{obs} - nt_{obs})^n}$$

- partial posterior p-value

$$p_{ppost} = \mathsf{P}r^{m(t|\mathbf{x}_{obs} \setminus t_{obs})}(T > t_{obs}) = \left(1 - \frac{nt_{obs}}{s_{obs}}\right)^{n-1}$$

identical to the similar p-value

- It can be shown that $p_{ppost} \rightarrow 0$ as $nt_{obs}/s_{obs} \rightarrow 1$
- also p_{ppost} is a frequentist p-value for all n
- p_{cpred}
 - conditional m.l.e. $\hat{\lambda}_{cMLE} \propto \sum_{i=1}^{n} X_i nX_1 = S nT$
 - $-\hat{\lambda}_{cMLE}$ is independent of $T \rightsquigarrow p_{cpred} = p_{ppost}$
 - derivation of p_{ppost} simpler than that of p_{cpred}
 - $\Pr(p_{ppost}(\mathbf{X}) \leq \alpha) \text{ does not depend on } \lambda \text{ (Theorem 1)} \rightsquigarrow \\ p_{cpred} \text{ (and } p_{ppost} \text{ and } p_{sim} \text{) frequentist } p\text{-value}$

a curious coincidence

- in examples $p_{sim} = p_{cpred} = p_{ppost}$, even though distributions on completely different (conditional) spaces
- quite useful $\rightsquigarrow p_{ppost}$ easier to derive
- **THEOREM** If $f(\mathbf{x}; \theta)$ (continuous) scale exponential, S = T + U sufficient

$$f(t, u; \theta) = k \ \theta^{\alpha} t^{\gamma} u^{\alpha - \gamma - 2} \exp\{-\theta(t + u)\}$$

with usual noninformative prior, $\pi(\theta) = 1/\theta$

$$p_{cpred} = p_{ppost} = p_{sim}$$

more results in Fraser and Rousseau (2008)

A word about computations

- In general p_{plug} the easiest, then p_{post} then p_{post} then p_{cpred} .
- Computation of $\hat{\theta}$ and simulations from posterior predictive \rightsquigarrow standard.
- To simulate from $f^*(t) = \int f(t \mid \theta) \pi^*(\theta) d\theta$:
 - simulate θ from $\pi^*(\theta)$
 - simulate \boldsymbol{x} from $f(\boldsymbol{x} \mid \theta)$ and compute $t = t(\boldsymbol{x})$ (or the p-value)

where $\pi^*(\theta)$ is the ppost or cpred posterior

• To simulate from $\pi^*(\theta) \rightsquigarrow M-H$ (or M-H within Gibbs)

partial posterior p-values

To simulate from $\pi(\theta \mid \mathbf{x}_{obs} \setminus t_{obs}) \propto \frac{\pi(\theta \mid \mathbf{x}_{obs})}{f(t_{obs} \mid \theta)}$

- easiest proposal is posterior $\pi(\theta \mid \mathbf{x}_{obs}) \rightsquigarrow$ often works, but not when model and data are very incompatible (posterior and partial posterior very distant)
- 'move' (and mix) posterior: If $\theta^* \sim \pi(\theta \mid \mathbf{x}_{obs})$, compute $\widetilde{\theta}^* = \theta^* + (\widehat{\theta}_{cMLE} - \widehat{\theta}_{MLE})$ $\widehat{\theta}_{cMLE} = \arg \max f(\boldsymbol{x} \mid t, \theta)$ is conditional MLE sometimes \rightsquigarrow 'mix' with a $U \sim U(0, 1)$ when convenient \rightsquigarrow log-scale
- moving some factors of $1/f(t_{obs} \mid \theta)$ into $\pi(\theta \mid \mathbf{x}_{obs})$ and renormalizing also works very well when feasible (instead of previous displacement)

- resulting algorithm : Given $\widetilde{ heta}^{(t)}$ at time t,
 - 1. generate $\theta^* \sim \pi(\theta \mid oldsymbol{x}_{obs})$
 - 2. move θ^* to $\widetilde{\theta}^*$
 - 3. acceptance probability:

$$\alpha = \min\left\{1, \frac{\pi(\widetilde{\theta}^* \mid \boldsymbol{x}_{obs}) \ f(t_{obs} \mid \widetilde{\theta}^{(t)}) \ \pi(\theta^{(t)} \mid \boldsymbol{x}_{obs})}{\pi(\widetilde{\theta}^{(t)} \mid \boldsymbol{x}_{obs}) \ f(t_{obs} \mid \widetilde{\theta}^*) \ \pi(\theta^* \mid \boldsymbol{x}_{obs})}\right\}$$

• added complication when $f(t \mid \theta)$ not close-form.

u-conditional predictive p-values

For any conditioning statistic U (and in particular for our proposal, U = conditional MLE), $f(\boldsymbol{x} \mid u, \theta)$ is often not available in closed form. General strategy:

- instead of generating from the required $m(\boldsymbol{x} \mid u_{obs})$ we generate from $m(\boldsymbol{x} \mid |u - u_{obs}| < \delta)$
- For small δ this is an approximation to generating from $m(\boldsymbol{x} \mid u_{obs})$ (now called ABC)
- for not so small $\delta,$ it can be regarded as a 'less restrictive' conditioning

- Again, for a MH algorithm to simulate from the conditional posterior, the easiest proposal is the usual posterior π(θ | x_{obs}), appropriately weighted and re-scaled (if possible) and proposals 'translated' as with *pppp*
- another possibility that works well is a Gibbs-type algorithm: If at time t we have the simulations $({\bm x}^{(t)},\,\theta^{(t)})$,
 - 1. Generate $\theta^{(t+1)} \sim \pi(\theta \mid \pmb{x}^{(t)})$
 - 2. Generate $x^{(t+1)} \sim f(x \mid \theta^{(t)}) \mathbf{1}_{\{|u-u_{obs}| < \delta\}}$ (that is, simulate repeatedly till $|u u_{obs}| < \delta$

Discrete sample spaces

- common analysis is to condition on U for which $f(x|u;\theta)$ does not depend on θ (Fisher Exact Test)
- difficulties
 - conditioning on U yields a severely constrained sample space and serious conservatism of p-values in small or moderate samples
 - choice of T is essentially 'forced' on the user
 - 'conditional issues' in extreme cases

 p_{ppost} substantially overcomes these difficulties

July 2012

2 x 2 contingency tables

	A_1	A_2	Totals
B_1	X_{11}	X_{12}	X_{1+}
B_2	X_{21}	X_{22}	X_{2+}
Totals	X_{+1}	X_{+2}	n

- Case 1. One margin X₊₁ = n₁, X₊₂ = n₂ fixed → null model of homogeneity: the two binomial distributions have same success probability θ
- Case 2. n fixed; null model is that classification by A and B is independent

Test of homogeneity

• null model: X_{11} and X_{12} are two independent binomial r.v.'s with the same success probability θ

$$f(x_{11}, x_{12}; \theta) = \begin{pmatrix} n_1 \\ x_{11} \end{pmatrix} \begin{pmatrix} n_2 \\ x_{12} \end{pmatrix} \theta^{x_{11} + x_{12}} (1 - \theta)^{n - x_{11} - x_{12}}$$

• Fisher exact test \rightsquigarrow conditions on X_{1+} and uses $T = X_{11}$ (textbook choice: essentially forced) resulting in the *p*-value:

$$p_{fet} = \sum f(t \mid x_{1+}^{o}) = \sum_{j=t_{obs}}^{\min\{x_{1+}^{o}, n_1\}} \left(\begin{array}{c} n_1\\ j \end{array}\right) \left(\begin{array}{c} n_2\\ x_{1+}^{o}-j \end{array}\right) \middle/ \left(\begin{array}{c} n\\ x_{1+}^{o}\end{array}\right)$$

for p_{ppost} → use the same T as in FET: T = X₁₁; this is only for comparison and to judge the power of the methodology
 (T = ¹/_{n1}X₁₁ - ¹/_{n2}X₂₂ would be more sensible unconditionally)

$$\pi(\theta) = 1 \rightsquigarrow \text{ partial posterior } Beta(x_{12}^o + 1, n_2 - x_{12}^o + 1)$$

$$p_{ppost} = \sum_{j=t_{obs}}^{n_1} \frac{n_2 + 1}{n_1 + 1} \begin{pmatrix} n_1 \\ j \end{pmatrix} \begin{pmatrix} n_2 \\ x_{12}^o \end{pmatrix} / \begin{pmatrix} n \\ x_{12}^o + j \end{pmatrix}$$

(here $p_{cpred} = p_{ppost}$)

specific example n₁ = 3 and n₂ = 2 (quite extreme case) → conditioning on x₁₊ can result in dramatic reduction in the sample space of T (which can have as little as 1 point, or as much as 3); for p_{ppost} this sample space is always {0,1,2,3}

Distribution functions of p-values p_{fet} (left) and p_{post} (right)

0.2

0.4

p-ppost

0.6

0.8

1.0

Test of independence

• with $\theta = \Pr(A_1)$ and $\xi = \Pr(B_1)$, the null model is

$$f(\mathbf{x};\theta,\xi) = \left(\frac{n!}{x_{11}!x_{12}!x_{21}!x_{22}!}\right)\theta^{x_{+1}}(1-\theta)^{x_{+2}}\xi^{x_{1+1}}(1-\xi)^{x_{2+1}}$$

• Fisher exact test conditions on both marginals (U) and uses $T = X_{11}$ (forced), with conditional density

$$f(t \mid n, x_{1+}^o, x_{+1}^o) = \left(\begin{array}{c} x_{1+}^o \\ t \end{array}\right) \left(\begin{array}{c} n - x_{1+}^o \\ x_{+1}^o - t \end{array}\right) \left/ \left(\begin{array}{c} n \\ x_{+1}^o \end{array}\right)\right$$

leading to the *p*-value (same as previously)

$$p_{fet} = \sum_{j=t_{obs}}^{\min\{x_{1+}^o, n_1\}} \begin{pmatrix} n_1 \\ j \end{pmatrix} \begin{pmatrix} n_2 \\ x_{1+}^o - j \end{pmatrix} / \begin{pmatrix} n \\ x_{1+}^o \end{pmatrix}$$

- p_{ppost} with same (non optimal) T as in FET
 - with uniform independent priors for θ,ξ

$$p_{ppost} = \int_0^1 \int_0^1 \pi(\theta, \xi \mid \mathbf{x}_{obs} \setminus t_{obs}) \sum_{t=t_{obs}}^n Bi(t \mid n, \theta\xi) \, d\theta \, d\xi$$

where the partial posterior is

 $\pi(\theta, \xi \mid \mathbf{x}_{obs} \setminus t_{obs}) \propto \theta^{x_{21}^o} (1-\theta)^{x_{+2}^o} \xi^{x_{12}^o} (1-\xi)^{x_{2+}^o} (1-\theta\xi)^{-(n-t_{obs})}$

- computation via importance sampling w.r.t.

 $\frac{1}{2} Un(\theta \mid 0, 1) Be(\xi \mid x_{12}^o + 1, x_{22}^o + 1) + \frac{1}{2} Be(\theta \mid x_{21}^o + 1, x_{22}^o + 1) Un(\xi \mid 0, 1)$ easy generation and highly efficient computationally • particular example

-n = 5

- support of $p_{fet}(\mathbf{X})$ is $\{0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9\}$, support of $p_{post}(\mathbf{X})$ noticeably richer
- next figure gives cdfs of $p_{fet}(X)$ and $p_{post}(X)$; if uniform, these would be F(p) = p.

CBMS-MUM

- how large does n need to be for the p-values to be approximately uniform?
 - sample size needed for cdf of a $p\mbox{-value}$ at 0.05 to be within 20% of 0.05
 - * when $(\theta,\xi)=(0.6,0.5)$,
 - $\cdot p_{fet}(\mathbf{X}) \approx U[0,1]$ when $n \approx 500$;
 - · $p_{ppost}(\mathbf{X}) \approx U[0,1]$ when $n \approx 10$
 - $\ast \ \mbox{when} \ (\theta,\xi) = (0.3,0.9) \mbox{,}$
 - $\cdot p_{fet}(\mathbf{X}) \approx U[0,1]$ when $n \approx 1200$,
 - · $p_{ppost}(\mathbf{X}) \approx U[0,1]$ when $n \approx 110$

a bad choice: $T \approx sufficient$

- apparent breakdown of both p_{fet} and p_{ppost} for large values of (θ,ξ)
- $p_{fet} \rightarrow$ hopelessly conservative \rightarrow never stating that data incompatible with model
- $p_{ppost} \rightsquigarrow$ markedly anti-conservative
- At a purely intuitive level, the behavior of p_{ppost} is quite sensible
 - we declare that large values of T means evidence against the null model
 - when (θ, ξ) both large, $T = X_{11}$ is typically very large (leading to rejection)
 - p_{ppost} exhibits exactly this behavior

- anti-conservative behavior of p_{ppost} arises because a very large T provides a great deal of information about the parameters, but little information about deviance from the model
- Most extreme example arises when T sufficient, a choice that is nearly useless for model checking
- intuitively, choice of a sufficient statistic for T allocates all the information from the data to learn about the unknown parameters, leaving none to judge model inadequacy
- even in this extremely bad scenario, p_{post} seems to convey some information, whereas p_{plug} and p_{post} are useless

example with T sufficient

• $X_i \sim Ber(\theta)$, $T = \sum X_i$, a sufficient statistic

•
$$p_{ppost} = 1 - t_{obs}/(n+1)$$

- for large n, distribution of p_{ppost} tightly concentrates around $1-\theta$
- entirely natural behavior: large $T\approx$ large values of θ and declared to be 'surprising'
- p_{plug} and p_{post}
 - distributions of both concentrate tightly about 1/2 when n is large for all θ
 - provide completely useless answers here

- the natural requirement for Bayesians → require a p-value to be uniform under the prior predictive distribution
 - p_{ppost} is a *p*-value for a Bayesian \rightsquigarrow 'average' of all the distribution functions of p_{ppost} is uniform
 - no Bayesian averages of the distribution functions of p_{plug} (or p_{post}) can be uniform

CBMS-MUM

67

What about $U \approx \text{sufficient in } p_{cpred(u)}$?

- Remember: for $p_{cpred(u)}$ the 'distribution of reference' was $f(t \mid u)$, with T measuring departure from the entertained model
- It was suggested that optimal choice of U for a given T would be to have $(T,U)\approx$ sufficient, with U 'overlapping' as little as possible with T
- Our proposal was to use $U = \hat{\theta}_c$ the conditional MLE (that is, the MLE of θ from $f(\boldsymbol{x} \mid T = t_{obs}, \theta)$ and the resulting *p*-value is p_{cpred}
- Robert and Rousseau (03) and Fraser and Rousseau (08) suggest use of $U = \hat{\theta}$, the MLE of θ from $f(x \mid \theta)$
- When $\hat{\theta}$ is sufficient (or nearly so), this makes any T ancillary in the conditional distribution $f(\boldsymbol{x} \mid u, \theta)$ (or nearly so), and hence

p-values (for any T) are approximately uniform

- Nothing is wrong with this except that Bayesian analysis is not really required, in that the 'recentering' of T is done through conditioning on a sufficient statistic, that is, by computing the (frequentist) p_{sim}
- We suspect (work in progress) that, for small n and when $\hat{\theta}$ is not sufficient
 - this choice might be too much conditioning (the discrete sample space gives a hint),
 - power might be an issue,
 - p-values are further from Uniformity than those from our original definition of p_{cpred}

Checking a Gamma distribution

• Entertained model: $X_1, \ldots, X_n \sim Ga(\alpha, \beta)$

$$f(x \mid \alpha, \beta) \propto x^{\alpha - 1} e^{-x/\beta}$$

with α shape and β scale parameters

- Use Jeffrey's prior for $\boldsymbol{\theta} = (\alpha, \beta)$
- Let the departure statistic be $T = \max(X_1, \ldots, X_n)$
- Compare model checks carried in the following distributions:
 - The posterior predictive
 - The conditional predictive (U-conditional with U = the conditional MLE of θ)
 - The U-conditional, with U = the unconditional MLE of $\boldsymbol{\theta}$

• a little simulated example

generate 19 observations from a Ga(3,3) and then add a very extreme observation equal to 5. Ordered data is:
0.36, 0.37, 0.42, 0.55, 0.56, 0.62, 0.69, 0.74, 0.94,
0.95,1.28, 1.29, 1.39, 1.44, 1.52, 1.58, 1.85, 1.87, 1.87, 5

- simulate behavior under the null with 500 replicates for n = 50

posterior and u-conditional posterior distributions

72
posterior and u-conditional predictive distributions

t

July 2012

distribution of p-values under the null

Conditional cmle p-values

0.8

1.0

Normal hierarchical models

Rest of talk: model is usual normal-normal hierarchical model with k groups:

$$\begin{aligned} X_{ij} \mid \mu_i \quad &\sim \quad N(\mu_i, \sigma_i^2) \quad \text{for } i = 1, \dots, k, \quad j = 1, \dots, n_i \\ \mu_i \mid \nu, \tau \quad &\sim \quad N(\nu, \tau^2) \quad \text{ for } i = 1, \dots, k . \end{aligned}$$

- use previous ways to get rid of (hyper)parameters (the prior for the means is 'agreed upon', and hence part of the 'model'). Variances σ_i^2 assumed known sometimes
- Investigate different 'nulls'

Checking the 'hypermean'

To fix ideas, begin with an easy one: testing a specified value for the "great mean" (and sometimes it is even of interest)

• recall $X_{ij} \mid \mu_i \stackrel{i}{\sim} N(\mu_i, \sigma^2), \quad \mu_i \mid \nu, \tau \stackrel{i}{\sim} N(\nu, \tau^2)$ assume k groups, n observations per group, same σ^2 (known)

• to test
$$H_0: \nu = \nu_0$$

• an intuitive
$$T : T = \frac{\sum_{i=1}^{k} \overline{X}_{i}}{k}$$

- *p*-value: $p = Pr^{f(t)}\{ |T \nu_0| \ge |t_{obs} \nu_0| \}$
- distribution of T: $f(t \mid \boldsymbol{\mu}) = N(t \mid \frac{\sum_{i=1}^{k} \mu_i}{k}, \frac{\sigma^2}{kn})$

integrate μ out (random effects) w.r.t. several distributions

Empirical Bayes (plug-in)

let $\hat{\tau}$ the MLE from $f(\boldsymbol{x} \mid \tau^2) = \int f(\boldsymbol{x} \mid \boldsymbol{\mu}) \pi(\boldsymbol{\mu} \mid \tau^2) d\boldsymbol{\mu}$

Consider $two \ \mathsf{EB}$ distributions for $oldsymbol{\mu}$:

$$- \pi^{EB}(\boldsymbol{\mu}) = \pi(\boldsymbol{\mu} \mid \hat{\tau}^2) = \pi(\boldsymbol{\mu} \mid \tau^2 = \hat{\tau}^2)$$
producing $m_{prior}^{EB}(t) = \int f(t \mid \boldsymbol{\mu}) \pi^{EB}(\boldsymbol{\mu}) d\boldsymbol{\mu}$

$$- \pi^{EB}(\boldsymbol{\mu} \mid \boldsymbol{x}_{obs}) \propto f(\boldsymbol{x}_{obs} \mid \boldsymbol{\mu}) \pi^{EB}(\boldsymbol{\mu})$$
producing $m_{post}^{EB}(t) = \int f(t \mid \boldsymbol{\mu}) \pi^{EB}(\boldsymbol{\mu} \mid \boldsymbol{x}_{obs}) d\boldsymbol{\mu}$

Note use of $\pi^{EB}(\boldsymbol{\mu} \mid \boldsymbol{x}_{obs})$ is clearly inappropriate, making an obvious double use of the data. We'll see that it exhibits identical behavior to posterior predictive checks.

Comparing both EB predictive
$$m(t)$$

Prior is $N\left(\nu_0, \frac{1}{k}\left(\frac{\sigma^2}{n} + \hat{\tau}^2\right)\right)$
Posterior is $N\left((1-\alpha)t_{obs} + \alpha \nu_0, \alpha \frac{1}{k}\left(\frac{\sigma^2}{n} + 2\hat{\tau}^2\right)\right)$
with $\alpha \to 0$ as $n \to \infty$ (or as $\hat{\tau}^2 \to \infty$)
assume now that $t_{obs} \to \infty$ (model very wrong)
 $m_{prior}^{EB}(t) \longrightarrow N(\nu_0, \infty)$
 $m_{post}^{EB}(t) \longrightarrow N(t_{obs}, \frac{2\sigma^2}{kn})$

inadequacy of $m_{post}^{EB}(t)$ for model checking is obvious, and hence the *p*-value (or graphical checks, or whatever) will also be seriously inadequate.

posterior and partial posterior distributions

With prior $\pi(\tau^2) \propto 1/\tau$, we use Gibbs to simulate from both $\pi_{post}(\boldsymbol{\mu}, \tau^2 \mid \boldsymbol{x}_{obs})$ and $\pi_{ppp}(\boldsymbol{\mu}, \tau^2 \mid \boldsymbol{x}_{obs} \setminus t_{obs})$

- full conditional of au^2 is common (n.c. χ^2)
- full conditionals of μ_i are N

```
means
```

```
post \rightsquigarrow (1 - \alpha) \bar{x}_i + \alpha \nu_0 (independent)
ppp \rightsquigarrow (1 - \alpha^*) [\bar{x}_i + \bar{\mu}_{rest} - \bar{x}_{rest}] + \alpha^* \nu_0
```

-
$$1/\text{variances}$$

post $\sim \frac{1}{\sigma^2} + \frac{1}{\tau^2}$
ppp $\sim \frac{k-1}{k} \frac{1}{\sigma^2} + \frac{1}{\tau^2}$

Examples

- 4 simulated examples, k = 8 groups, n = 12 observations per group
- in all of them, test $H_0: \nu = 0$ ($\nu =$ mean of μ_i 's)

•
$$X_{ij} \sim N(\mu_i, 4)$$

- $\mu_i \sim N(0, 1)$ in Example 1 (H_0 true)
- $\mu_i \sim N(1.5, 1)$ in Example 2 (H_0 not true)
- $\mu_i \sim N(2.5, 1)$ in Example 3 (H_0 not true)
- $\mu_i \sim N(2.5, 3)$ in Example 4 (H_0 not true)

	Ex. 1	Ex. 2	Ex. 3	Ex. 4
ppp	0.859	0.008	0.000	0.005
EB prior	0.831	0.016	0.007	0.013
EB post	0.711	0.313	0.305	0.378
post	0.712	0.333	0.325	0.392

Checking the second level

• recall

$$X_{ij} \mid \mu_i \quad \stackrel{i}{\sim} \quad N(\mu_i, \sigma^2)$$
$$\mu_i \mid \nu, \tau \quad \stackrel{i}{\sim} \quad N(\nu, \tau^2)$$

k groups, n observations per group, same σ^2

- to test the second level of the hierarchy
- intuitive, easy to work with $T = \max{\{\bar{X}_1, \dots, \bar{X}_k\}}$

• p-value:
$$p = Pr^{f(\bullet)} \{ T \ge t_{obs} \}$$

• priors (prior for σ^2 when unknown)

$$\pi(\sigma^2) \propto \frac{1}{\sigma^2}$$
$$\pi(\nu \mid \tau^2) \propto 1$$
$$\pi(\tau^2) \propto \frac{1}{\tau}$$

 $\bullet\,$ all distributions and $p\mbox{-values}$ require MC or MCMC

Example

Assume a simulated example with 5 groups, 8 observations per group and

$$X_{ij} | \mu_i \sim N(\mu_i, 4)$$
 for $i = 1, ..., 5$ $j = 1, ..., 8$
 $\mu_i \sim N(1, 1)$ for $i = 1, ..., 4$
 $\mu_5 \sim N(5, 1)$

sample means: 1.56, 0.64, 1.98, 0.01, 6.96 (The mean of the 5th group is 6.65 SD away from the others)

	p_{ppp}	p_{prior}^{EB}	p_{post}^{EB}	p_{post}
σ^2 known	.010	.130	.347	.409
σ^2 unknown	.015	.195	.371	.405

T₁, Ejemplo 1 0.4 m_{post} mppp Densidad 0.2 0.3 m^{EB} ____ t_{obs} - - m^{EB}_{post} 0.1 0.0 12 2 10 0 4 6 8 $T_1, \ Ejemplo \ 5$ 0.6 m_{ppp} m_{post} Densidad 0.2 0.4 ___ m^{EB} ____ t_{obs} _ m^{EB}_{post} 0.0 2 Ś 5 Ż 6 4 8 1

Figure 1: σ^2 unknown

behavior under the null

- Assume X_1, X_2, \ldots, X_n i.i.d. $f(x \mid \theta) \rightsquigarrow T \sim f(t \mid \theta)$
- for known θ (or ancillary T)

$$p = p(\boldsymbol{X}) \sim U(0,1)$$

pretty convenient \rightsquigarrow same meaning across problems also \rightsquigarrow defining property of a *p*-value

• for unknown $\theta \rightsquigarrow p(\mathbf{X}) \sim U(0,1)$ for all θ usually not possible \rightsquigarrow require $p(\mathbf{X}) \sim U(0,1)$ asymptotically (RVV, 2000), and approximately so for finite n

- RESULT: for asymptotic normal T, the *only* p-value which is asymptotically Un(0,1) is p_{ppp} (RVV, 00). Also, it is most powerful against Pittman's alternatives. Also, p_{plug} and p_{post} are conservative.
- here T not asympt. N, and also want to exemplify behavior for small/moderate $n \rightsquigarrow$ simulation
- pictures \rightsquigarrow consider $p_{plug}(\mathbf{X}), p_{post}(\mathbf{X}), p_{ppp}(\mathbf{X})$ as R.V. \rightsquigarrow simulate \mathbf{X} under the null model, represent density of the *p*-values \rightsquigarrow should be $\approx U(0, 1)$
- null: $X_{ij} \mid \mu_i \sim N(\mu_i, 4), \quad \mu_i \sim N(0, 1)$ k = 5, 15, 25 groups, 8 observations per group.

July 2012

89

behavior under alternatives

- "null model": $X_{ij} \mid \mu_i \stackrel{i}{\sim} N(\mu_i, \sigma^2), \quad \mu_i \mid \nu, \tau \stackrel{i}{\sim} N(\nu, \tau^2)$
- To explore behavior of $p_{plug}({\bm X}~), p_{post}({\bm X}~), p_{ppp}({\bm X}~)$ when "null model" not true \rightsquigarrow POWER
- concentrate in 'wrong' second level: simulate X_{ij} from normal and μ_i from non-normal
- First level: $X_{ij} \mid \mu_i \sim N(\mu_i, 4)$ n = 8 observations per group, k = 5, 10 groups
- second level: $\mu_i \sim Gumbel(0,2)$ (similar results with exponential and log-normal, B&C)

$$\Pr(p - value \le \alpha)$$

α	0.02	0.05	0.1	0.2		
	Normal-Gumbel					
k=5						
p_{ppp}	0.124	0.219	0.322	0.462		
p_{post}	0.000	0.000	0.000	0.000		
p_{prior}^{EB}	0.000	0.000	0.000	0.268		
k=10						
p_{ppp}	0.208	0.314	0.425	0.550		
p_{post}	0.000	0.000	0.000	0.003		
p_{prior}^{EB}	0.001	0.067	0.187	0.383		

Binomial-Beta model example: Bristol Royal Infirmary Inquiry data

Real example: number n_i of open-heart operations and the corresponding number Y_i of deaths of children under 1 year in 12 hospitals in England, (Spiegelhalter et al. 2002).

$$Y_{i} \mid \theta_{i} \qquad \stackrel{i}{\sim} \qquad \text{Bin}(\theta_{i}, n_{i}), \quad i = 1, \dots, I,$$

$$\pi(\boldsymbol{\theta} \mid \alpha, \beta) \qquad = \qquad \prod_{i=1}^{I} \text{Beta}(\theta_{i} \mid \alpha, \beta),$$

$$\pi(\alpha, \beta) \qquad \propto \qquad \text{Jeffreys prior} \qquad \text{(Yang and Berger 87)}$$

Deaths by operations in 12 hospitals in England Deaths -

Operations

• As departure statistics we use:

$$\mathsf{Max}\left\{\frac{y_i}{n_i}\right\} \text{ and } \mathsf{Min}\left\{\frac{y_i}{n_i}\right\}$$

• To approximate the *ppp* distribution we use the normal approximation to the binomial.

	p_{prior}^{EB}	p_{post}^{EB}	p_{post}	p_{ppp}
Maximum	0.03	0.16	0.23	0.00
Minimum	0.67	0.56	0.62	0.64

96

Other methods are reviewed and discussed in B&C

- Simulation-based model checking proposed by Dey, Gelfand, Swartz and Vlachos, 98, as a computationally intense method for model checking. It seems to work well in detecting the incompatibility between model and the data, but it requires proper priors.
- O'Hagan method (O'Hagan, 2003) is highly sensitive to the prior chosen, and in fact it seems to be conservative with non-informative priors.
- Marshall and Spiegelhalter's conflict p-values (Marshall and Spiegelhalter, 2003) seems to work well, produce as many p-values as number of groups and multiplicity might be an issue.
- Proposals of Johnson, 2006; Evans and Moshonov, 06.

... in conclussion

- Bayesian checks are better than plug-ing checks
- Posterior predictive check are extremely dangerous, unless T is nearly ancillary. But in this case, plug-ing is recommended because it is easier
- Posterior predictive checks are defended on grounds of simple computations; plug-in checks are simpler and often better
- because of its familiarity, p-values, when calibrated, are useful for model checking (but the message is the same for other, formal or informal, checks, like graphical checks)

- if a true p-value (U[0,1]) is desired with uncentered T
 - p_{ppost} (and p_{ppred}) are best in asymptotic and studied small sample situations; they *automatically* centers T
 - p_{plug} is superior to p_{post}
- computationally,
 - p_{plug} and p_{post} are usually simplest
 - p_{ppost} is easy to compute if $f(t|\theta)$ is available.
 - p_{cpred} is available with ABC techniques
- in discrete settings, p_{ppost} offers dramatic gains and avoids excessive conservatism

THANKS !! ...