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Outline
• I. Reproducibility of Science

– Evidence of an increasing lack of reproducibility of science

– Some reasons for the lack of reproducibility

∗ Publication bias

∗ Experimental biases, including programming errors

∗ The very considerable rewards for ‘positive’ results

∗ Statistical biases

∗ Egregiously bad statistics

∗ The incorrect way in which p-values are used

∗ Failure to adjust for multiplicities

· Multiple testing

· Multiple looks at the data

· Multiple statistical analyses

– How Bayesian analysis can help

• II. A Brief History of Bayesian Statistics

• III. Could Fisher, Jeffreys and Neyman have agreed on testing?
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I. Reproducibility of Science

A. Evidence for a Lack of Reproducibility

• “The reliability of results from observational studies has been called

into question many times in the recent past, with several analyses

showing that well over half of the reported findings are subsequently

refuted.” JNCI, 2007

• The NIH funded randomized clinical trials to follow up exciting results

from 20 observational studies. Only 1 replicated.

• Bayer Healthcare reviewed 67 in-house attempts at replicating the

findings in published research.

– Less than 1/4 were viewed as having been essentially replicated.

– Over 2/3 had major inconsistencies leading to project termination.

• John P. A. Ioannidis, JAMA-2005, 218-28: Five of 6 highly cited

nonrandomized studies were contradicted or had found stronger effects

than were established by later studies.
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Even the best studies often fail to replicate.

• Ioannidis looked at the 49 most famous medical publications from

1990-2003 resulting from randomized trials; 45 claimed successful

intervention.

– 7 (16%) were contradicted by subsequent studies

– 7 others (16%) had found effects that were stronger than those of

subsequent studies

– 20 (44%) were replicated

– 11 (24%) remained largely unchallenged.

• Phase II drug trials success rates are falling (28% 5 years ago, 18%

now) (Arrowsmith (2011) Nature Reviews Drug Discovery 10)

• 50% phase III drug trial failure rates are now being reported, versus a

20% failure rate 10 years ago (Arrowsmith (2011) Nature Reviews Drug

Discovery 10); 70% phase III cancer drug failure rate

• Reports that 30% of phase III drug trial successes fail to replicate
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B. Some Reasons for a Lack of Reproducibility

1. Publication bias:

• Negative (and especially small negative) studies are often never

reported or, if they are, can have publication delays of up to 3 years.

Figure 1: From Fanelli, D. Scientometrics 90, 891–904 (2011).
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• Ioannides: Looked at a meta-analysis of a widely studied head and

neck cancer:

– the meta-analysis reported on 80 published studies;

– they found 13 additional published studies not in the meta-analysis;

– they found 10 non-published studies, but were able to get the data;

– they found another 38 studies where data could not be obtained;

– who knows how many other studies were done leaving no record.

The original 80 provided significance at 0.05 in the meta-analysis; the

80+13 were barely significant; the 80+13+10 did not yield significance.

• Effect sizes for observational studies with small sample sizes tend to be

much larger than effect sizes for studies with large sample sizes.
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• Interesting approach to detecting bias (Ioannides and Trikalinos, 2007):

– look at the available studies, focusing on sample sizes and effect sizes;

– perform a meta-analysis to estimate the overall effect;

– simulate studies from this assumed population effect and the same sample

sizes to determine how many studies should be nonsignificant, and

compare this with the actual number of nonsignificant studies.

Examples (Gregory Francis, Psychon Bull Rev, 2012):

• The probability having one or fewer non-significant studies in the ten Bem

(2011) psi* experiments is 0.058.

• Meissner & Brigham (2001) performed a meta-analysis of 18 experiments on

verbal overshadowing**, nine of which were significant. The probability of

nine or fewer non-significant experiments is 0.022 (1:5 odds)

Note: If there were publication bias, this would underestimate its extent, because

of using the published studies to determine the overall effect.

*sensing future events and using that information to judge the present

**visual memory is impaired after subjects give a verbal description of the stimuli
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2. Experimental biases:

Figure 2: Historical record of values of some particle properties published over

time, with quoted error bars (Particle Data Group).
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time, with quoted error bars (Particle Data Group).
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3. The very considerable rewards for ‘positive’ results

• Money and fame

– “There is nothing wrong with cancer research that a little less money

wouldn’t cure.” (Nathan Mantel, NCI)

• Promotion and tenure

• Journals want high impact factors

• ...

• And, except perhaps for physics, there seems to be little to no scientific

penalty for having a positive finding later refuted.
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4. Statistical biases

• Confounding, especially in observational studies

– Worse with large sample sizes

• Programming errors

“To err is human, but to really foul things up requires a computer.”

Farmers’ Almanac (1978)

• ...
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5. Use of egregiously bad statistics

5.1. Using statistics ‘as a language’:

Sander Nieuwenhuis, Birte U Forstmann & Eric-Jan Wagenmakers, Nature

Neuroscience 14, 1105–1107 (2011).

• Reviewed 513 neuroscience articles in five top-ranking journals.

• Found 157 comparing ‘Treatment A’ and ‘Treatment B.’

– 78 correctly looked at the mean difference of effects for significance.

– 79 had at least one instance of incorrectly concluding that there was

a significant difference between the treatments if one was ‘significant

at the 0.05 level against a control’ and the other was not

(for instance, if zA = 1.97 and zB = 1.95 ).

5.2. Purposely ignoring statistical principles:

• The tradition in epidemiology is to ignore multiple testing.

• The tradition in psychology is to ignore optional stopping.

“You cannot ask us to take sides against arithmetic.” Winston Churchill
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6. The incorrect way in which p-values are used:

“To p, or not to p, that is the question?”

• Few non-statisticians understand p-values, most erroneously thinking

they are some type of error probability (Bayesian or frequentist).

– A survey 30 years ago:

∗ “What would you conclude if a properly conducted, randomized

clinical trial of a treatment was reported to have resulted in a

beneficial response (p < 0.05)?

1. Having obtained the observed response, the chances are less than 5%

that the therapy is not effective.

2. The chances are less than 5% of not having obtained the observed

response if the therapy is effective.

3. The chances are less than 5% of having obtained the observed

response if the therapy is not effective.

4. None of the above.

∗ We asked this question of 24 physicians ... Half ... answered

incorrectly, and all had difficulty distinguishing the subtle differences...

∗ The correct answer to our test question, then, is 3.”

13



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

“This isn’t right. This isn’t even wrong.” –Wolfgang Pauli, on a

submitted paper

∗ Actual correct answer: The chances are less than 5% of having

obtained the observed response or any more extreme response if

the therapy is not effective.

• But, is it fair to count ‘possible data more extreme than the actual

data’ in the evidence against the null hypothesis?

Jeffreys (1961): “An hypothesis, that may be true, may be rejected

because it has not predicted observable results that have not occurred.”

• Matthews (1998): “The plain fact is that 70 years ago Ronald Fisher

gave scientists a mathematical machine for turning baloney into

breakthroughs, and flukes into funding.”

• When testing precise hypotheses, true error probabilities (Bayesian or

frequentist) are much larger than p-values.

– Later examples.

– Applet (of German Molina) available at www.stat.duke.edu/∼berger
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7. Failure to adjust for multiplicities:

• Failure to properly account for multiple testing:

– In a recent talk about the drug discovery process, the following numbers

were given in illustration.

∗ 10,000 relevant compounds were screened for biological activity.

∗ 500 passed the initial screen and were studied in vitro.

∗ 25 passed this screening and were studied in Phase I animal trials.

∗ 1 passed this screening and was studied in a Phase II human trial.

This could be nothing but noise, if screening was done based on

‘significance at the 0.05 level.’

“Basic research is like shooting an arrow in the air and, where it lands,

painting a target.” Homer Adkins

– Multiple Multiple Testing (e.g., plasma samples are sent to separate

genomic, protein, and metabolic labs for ‘discovery’.)

– Serial Studies (e.g., there have been 16 large Phase III Alzheimer’s trials -

all failing; the probability of that is 0.44)

– The tradition in epidemiology is to ignore multiple testing,

∗ usually arguing that the purpose is to find anomalies for further study.
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• The tradition in psychology is to ignore optional stopping; if one is close

to p = 0.05, go get more data to try get there (with no adjustment).

– Example: Suppose one has p = 0.08 on a sample of size n. If one takes up to

four additional samples of size n
4
, the probability of reaching p = 0.05 is 2

3
.

– When bias is present, one can often quickly reach p = 0.05.

• Multiple statistical analyses

– Data selection “Torture the data long enough and they will confess to anything.”

∗ Removing ‘outliers’ (that don’t seem ‘reasonable’)

∗ Removing unfavorable data (e.g., because psychic powers come and go)

– Trying out multiple models until ‘one works.’

– Trying out multiple statistical procedures until ‘one reveals the signal.’ (At

CERN 1012 ‘cuts’ can potentially be applied to each particle track.)

– Subgroup analysis

– ...

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011), Psychological

Science, 22, 1359–1366: show ‘significant evidence’ that listening to the song

‘When I’m Sixty-four’ by the Beatles can reduce a listener’s age by 1.5 years.
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C. How Bayesian Analysis Can Help
1. Bayesian Hypothesis Testing
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Hypotheses and data:

• Alvac had shown no effect

• Aidsvax had shown no effect

Question: Would Alvac as a primer and Aidsvax as a booster work?

The Study: Conducted in Thailand with 16,395 individuals from the

general (not high-risk) population:

• 74 HIV cases reported in the 8198 individuals receiving placebos

• 51 HIV cases reported in the 8197 individuals receiving the treatment
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The test that was performed:

• Let p1 and p2 denote the probability of HIV in the placebo and

treatment populations, respectively.

• Test H0 : p1 = p2 versus H1 : p1 ̸= p2

• Normal approximation okay, so

z =
p̂1 − p̂2√
σ̂{p̂1−p̂2}

=
.009027− .006222

.001359
= 2.06

is approximately N(θ, 1), where θ = (p1 − p2)/(.001359).

We thus test H0 : θ = 0 versus H1 : θ ̸= 0, based on z.

• Observed z = 2.06, so the p-value is 0.04.

• If test H0 : θ = 0 versus H1 : θ > 0, the p-value is 0.02.
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Bayesian analysis:

Posterior odds of H1 to H0 = [Prior odds of H1 to H0]×B10(z) ,

where

B10(z) = Bayes factor of H1 to H0 = ‘data-based odds of H1 to H0’

=
average likelihood of H1

likelihood of H0 for observed data
=

∫
1√
2π

e−(z−θ)2/2π(θ)dθ

1√
2π

e−(z−0)2/2
,

For z = 2.06 and π(θ) = Uniform(0, 2.95), the nonincreasing prior most

favorable to H1,

B10(z) = 5.63 (recall, the one-sided p-value is 0.020)

(The actual subjective ‘study team’ prior yielded B∗
10(2.06) = 4.0.)
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General Conversion of p-values to Bayes Factors

Robust Bayesian theory suggests a general and simple way to calibrate

p-values. (Sellke, Bayarri and Berger, 2001 Am. Stat.).

• A proper p-value satisfies H0 : p(X) ∼ Uniform(0, 1).

• Consider testing this versus H1 : p ∼ f(p), where Y = − log(p) has a

decreasing failure rate (a natural non-parametric alternative).

• Theorem 1 If p < e−1, B01 ≥ −e p log(p). (Vovk, 1993 JRSSB,

derived this from a parametric alternative.)

• An analogous lower bound on the conditional Type I frequentist error is

α(p) ≥ (1 + [−e p log(p)]−1)−1 .

p .2 .1 .05 .01 .005 .001 .0001 .00001

−ep log(p) .879 .629 .409 .123 .072 .0189 .0025 .00031

α(p) .465 .385 .289 .111 .067 .0184 .0025 .00031
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Figure 5: Elgersma and Green (2011): α(p) versus observed p-values for 314

articles in Ecology in 2009.
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2. The Bayesian Approach to Multiple Testing

Key Fact: Bayesian analysis deals with multiplicity testing solely through

the assignment of prior probabilities to models or hypotheses.

Example: Multiple Testing under Exclusivity

Suppose one is testing mutually exclusive hypotheses Hi, i = 1, . . . ,m, so

each hypothesis is a separate model.

If the hypotheses are viewed as exchangeable, choose P (Hi) = 1/m.

Example: 1000 energy channels are searched for a signal:

• if the signal is known to exist and occupy only one channel, but no channel is

theoretically preferred, each channel can be assigned prior probability 0.001.

• if the signal is not known to exist (e.g., it is the prediction of a non-standard

physics theory) prior probability 1/2 should be given to ‘no signal,’ and

probability 0.0005 to each channel.

This is the Bayesian solution regardless of the structure of the data. In

contrast, frequentist solutions depend on the structure of the data.
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Example: Genome-wide Association Studies (GWAS)

• Early genomic epidemiological studies almost universally failed to

replicate (estimates of the replication rate are as low as 1%), because

they were doing multiple testing at ‘ordinary p-values’.

• A very influential paper in Nature (2007), by the Wellcome Trust Case

Control Consortium, argues for a cutoff of p < 5× 10−7

(−ep log(p) = 2.0× 10−5).

– Derived from a Bayesian argument, with prior odds of an

association set at 1/100, 000.

– Found 21 genome/disease associations; all but one have been

replicated.

– Later studies in GWAS have recommended cutoffs as low as

5× 10−8 (−ep log(p) = 2.3× 10−6).
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Summary 1. There is a lack of recognition that better statistics
is the solution to much of the reproducibility problem

The extent of the problem:

• Dozens (hundreds) of articles addressing the problem; few say much

about statistics (except those written by statisticians).

• Few journals adequately police the statistical analyses in their papers.

“What’s the difference between ignorance and apathy?”

“I don’t know and I don’t care.”

• An extreme illustration - The Decline Effect (see “The Truth Wears Off,”

by Jonah Lehrer in the New Yorker, 2010):

– This is the well-observed phenomenon that as more studies come in on

something, the effect size declines.

– This has been hypothesized to be a law of nature, like the uncertainty

principle; scientists observing nature change nature.
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Summary 2: How Bayesian analysis can help

• While it may not be possible to replace p-values with Bayes factors,

one can at least replace them with

– −ep log(p), termed the lower bound on the odds of no effect to there

being an effect; or

– [1 + (−ep log(p))−1]−1, termed the lower bound on the conditional

frequentist Type 1 error.

• With Bayesian analysis there is no debate about a penalty for multiple

tests, since prior probabilities are transparent.

• There is then no optional stopping issue; formal Bayesian answers do

not depend on the stopping rule (although −ep log(p) might).

• There is then a systematic way to deal with multiple statistical

analyses, through Bayesian model averaging.
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Summary 3. Other efforts to address the
reproducibility issue*

• There have been a variety of efforts to establish protocols for scientific

investigation:

– Pre-experimental statements of intent and plan.

– Documentation of all manipulations of data and all analyses attempted

(e.g. Sweave); at a minimum, give the data.

– Protocols for allowed methods of analysis.

• Efforts to allow publication of all results, positive or not.

• Optimal solution is to convince the science funding agencies to include

statisticians on research teams, or at least provide funds for the data

analysis, but this would require a radical expansion of statistics.

• Should statistical societies (as opposed to individual statisticians)

police systemic bad statistical practice?

*“I was going to buy a copy of The Power of Positive Thinking, and then I

thought: What the hell good would that do?” –Ronnie Shakes
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II. A Brief History of (Objective) Bayesian
Statistics
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The Reverend Thomas Bayes, began the objective
Bayesian theory, by solving a particular problem

• Suppose X is Binomial
(n,p); an ‘objective’ belief
would be that each value
of X occurs equally often.

• The only prior distribution
on p consistent with this
is the uniform distribution.

• Along the way, he
codified Bayes theorem.

• Alas, he died before the
work was finally
published in 1763.
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The real inventor of Objective Bayes was Simon Laplace
(also a great mathematician, astronomer and civil servant)

who wrote Théorie Analytique des Probabilité in 1812

• He virtually always utilized a
‘constant’ prior density (and
clearly said why he did so).

• He established the ‘central limit
theorem’ showing that, for large
amounts of data, the posterior
distribution is asymptotically
normal (and the prior does not
matter).

• He solved very many applications,
especially in physical sciences.

• He had numerous methodological
developments, e.g., a version of
the Fisher exact test.
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• It was called probability
theory until 1838.

• From 1838-1950, it
was called inverse
probability, apparently
so named by Augustus
de Morgan.

• From 1950 on it was
called Bayesian
analysis (as well as the
other names).
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The importance of inverse probability b.f. (before
Fisher): as an example, Egon Pearson in 1925 finding

the ‘right’ objective prior for a binomial proportion

• Gathered a large number of
estimates of proportions pi
from different binomial
experiments

• Treated these as arising from
the predictive distribution
corresponding to a fixed prior.

• Estimated the underlying prior
distribution (an early empirical
Bayes analysis).

• Recommended something
close to the currently
recommended ‘Jeffreys prior’
p-1/2(1-p)-1/2.
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1930’s: ‘inverse probability’ gets ‘replaced’ in
mainstream statistics by two alternatives

• For 50 years, Boole, Venn and
others had been calling use of a
constant prior logically unsound
(since the answer depended on
the choice of the parameter), so
alternatives were desired.

• R.A. Fisher’s developments of
‘likelihood methods,’ ‘fiducial
inference,’ … appealed to many.

• Jerzy Neyman’s development of
the frequentist philosophy
appealed to many others.
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Harold Jeffreys (also a leading geophysicist) revived the
Objective Bayesian viewpoint through his work, especially

the Theory of Probability (1937, 1949, 1963)

• The now famous Jeffreys prior
yielded the same answer no
matter what parameterization
was used.

• His priors yielded the ‘accepted’
procedures in all of the
standard statistical situations.

• He began to subject Fisherian
and frequentist philosophies to
critical examination, including
his famous critique of p-values:
“An hypothesis, that may be
true, may be rejected because it
has not predicted observable
results that have not occurred.”
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• In the 50’s and 60’s the
subjective Bayesian approach
was popularized (de Finetti,
Rubin, Savage, Lindley, …)

• At the same time, the objective
Bayesian approach was being
revived by Jeffreys, but
Bayesianism became
incorrectly associated with the
subjective viewpoint. Indeed,
– only a small fraction of Bayesian

analyses done today heavily
utilize subjective priors;

– objective Bayesian methodology
dominates entire fields of
application today.
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III. Could Fisher, Jeffreys and Neyman Have
Agreed on Testing?
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Could they have agreed on testing methodology?

Ronald Fisher Harold Jeffreys Jerzy Neyman
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Is there a statistical testing methodology that
is compatible with the core elements of the
statistical approaches of Fisher, Jeffreys, and
Neyman?
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Disagreements and Disagreements

• Fisher, Jeffreys and Neyman Disagreed as to the correct foundations of

statistics, but often agreed on the statistical procedure to use.

– All supported use of the same estimation and confidence procedures

for the normal linear model

– Disagreeing only on the interpretation (e.g., to be assigned to the

statement (x̄− 1.96 σ√
n
, x̄+ 1.96 σ√

n
) is a 95% confidence interval for

a normal mean).

• In testing, however, they Disagreed as to the basic numbers to be

reported. Was this unavoidable?
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The Disagreement

Fisher, Jeffreys and Neyman would report considerably different numbers

in actual practice.

Example: In testing whether a normal mean is zero or not, with

z = x̄
σ/

√
n
= 2.3 (or z = 2.9) (σ known, n = 10),

• Fisher would report p = 0.021 (or p = .0037).

• Jeffreys would report the objective posterior probability

Pr(H0|x) = 0.30 (or Pr(H0|x) = 0.10)

(using equal prior probabilities of the hypotheses and a conventional

Cauchy(0,σ) prior on the alternative).

• Neyman, had he pre-specified α = 0.05, would report α = 0.05 in either

case (and a Type II error β).
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Their criticisms of the other approaches

• Criticisms of Bayesian analysis in general. (Fisher and Neyman rarely

addressed Jeffreys particular version of Bayesian theory.)

– Fisher and Neyman rejected pre-Jeffreys objective Bayesian analysis

as logically flawed.

– Fisher’s subsequent position was that Bayesian analysis is based on

prior information that is only rarely available.

– Neyman, in addition, assumed that Bayesian analysis violated the

Frequentist Principle.
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• Criticisms of Neyman-Pearson testing

– Fisher and Jeffreys rejected N-P tests because they report fixed (α, β);

i.e., do not provide evidence or error measures that vary with the data.

– Fisher disliked alternative hypotheses and power.

• Criticisms of Fisher’s significance testing

– Neyman and Jeffreys: alternative hypotheses are essential.

– Neyman: p-values violate the Frequentist Principle.

– p-values are commonly misinterpreted as error rates, resulting in a

considerable overestimation of the actual evidence against H0.
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One indication of the non-frequentist nature of p-values can be seen from

the applet (of German Molina) at

www.stat.duke.edu/∼berger

The situation considered follows Neyman’s proposals to evaluate testing

methods by simulations on a long series of different testing problems.

Suppose the ith test consists of

• normal data with unknown mean θi and known variance;

• testing of H0 : θi = 0 versus H1 : θi ̸= 0.

The applet simulates a long series of such tests, and records how often H0

is true for p-values in given ranges.
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Basis for Unification in Testing: the
Conditional Frequentist Approach

Basic question: What is the sequence of possible data for which to

consider frequentist evaluations?

(Fisher:“relevant subset;” Lehmann: “frame of reference.”)

Artificial example: Observe X1 and X2, where

Xi =

 θ + 1 with probability 1/2

θ − 1 with probability 1/2.

Consider the confidence set for θ

C(X1, X2) =

 1
2 (X1 +X2) if X1 ̸= X2

X1 − 1 if X1 = X2.
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Unconditional coverage:

Pθ(C(X1, X2) contains θ) = 0.75.

This is silly: if x1 ̸= x2, we know C(x1, x2) = θ;

if x1 = x2, C(X1, X2) equals θ only with probability 1/2.

One must use conditional coverage:

• Define the conditioning statistic S = |X1 −X2|, measuring the

“strength of evidence” in the data (here ranging from s = 0 to s = 2);

• Compute frequentist coverage conditional on the strength of evidence

S.

Pθ(C(X1, X2) contains θ | s = 2) = 1

Pθ(C(X1, X2) contains θ | s = 0) = 1
2 .

Note: The unconditional coverage arises as the expected value of the

conditional coverage.
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Conditional frequentist testing

• Find a statistic, S(x), whose magnitude indicates the “strength of

evidence” in x.

• Compute error probabilities as

α(s) = Type I error prob, given S(x) = s

= P0(Reject H0 | S(x) = s)

β(s) = Type II error prob, given S(x) = s

= P1(Accept H0 | S(x) = s)
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History of conditional frequentist testing

• Many Fisherian precursors based on conditioning on ancillary statistics

and on other statistics (e.g., the Fisher exact test, conditioning on

marginal totals).

• General theory in Kiefer (1977 JASA); the key step was in

understanding that almost any conditioning is formally allowed within

the frequentist paradigm (ancillarity is not required).

• Brown (1978) found optimal conditioning frequentist tests for

‘symmetric’, simple hypotheses.

• Berger, Brown and Wolpert (1994 AOS) developed the theory

discussed herein for testing simple hypotheses.
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Our suggested choice of the conditioning statistic

• Let pi be the p-value from testing Hi against the other hypothesis; use

the pi as measures of ‘strength of evidence,’ as Fisher suggested.

• Define the conditioning statistic S = max{p0, p1}; its use is based on

deciding that data (in either the rejection or acceptance regions) with

the same p-value has the same ‘strength of evidence.’
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The conditional frequentist test (TC)

• Accept H0 when p0 > p1, and reject otherwise.

• Compute Type I and Type II conditional error probabilities (CEPs) as

α(s) = P0(rejecting H0 | S = s) ≡ P0(p0 ≤ p1 | S(X) = s)

β(s) = P1(accepting H0 | S = s) ≡ P1(p0 > p1 | S(X) = s).

• The resulting test is given by

TC =


if B(x) ≤ c, reject H0 and report Type I CEP

α(x) = B(x)/(1 +B(x)) ;

if B(x) > c, accept H0 and report Type II CEP

β(x) = 1/(1 +B(x)),

where c is the critical value at which the two p-values are equal.
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The potential Agreement

• The evidentiary content of p-values is acknowledged, but ‘converted’ to

error probabilities by conditioning.

• The conditional error probabilities α(s) and β(s) are fully

data-dependent, yet fully frequentist.

• α(s) and β(s) are exactly equal to the (objective) posterior

probabilities of H0 and H1, respectively, so the conditional frequentists

and Bayesians report the same error (Berger, Brown and Wolpert, 1994

AOS).
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A simple example
Sellke, Bayarri and Berger (2001 American Statistician)

• H0 : X ∼ Uniform(0, 1) vs. H1 : X ∼ Beta(0.5, 1).

• B(x) = 1
(2

√
x)−1 = 2

√
x is the likelihood ratio (and Bayes factor).

• p0 = P0(X ≤ x) = x and p1 = P1(X ≥ x) = 1−
√
x.

• Accept H0 when p0 > p1 (i.e., when x > .382) and reject otherwise.

• Define S = max{p0, p1} = max{x, 1−
√
x} (so it is declared that, say,

x = 3
4 has the same “strength of evidence” as x = 1

16 ).

• The conditional test is

TC =



if x ≤ 0.382, reject H0 and report Type I CEP

α(x) = (1 + 1
2
x−1/2)−1 ;

if x > 0.382, accept H0 and report Type II CEP

β(x) = (1 + 2x1/2)−1.

• α(x) and β(x) are objective Bayes posterior probabilities of H0 and H1
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An extreme example of the difference between p-values and CEPs

Observe X ∼ N(x | 0, σ2). Test

H0 : σ2 = 1 versus H1 : σ2 = 1.1 .

The p-value is just the usual one, e.g. p = 0.05 if x = 1.96.

The conditional frequentist error probability when rejecting H0 is

α(x) =
(
1 + (0.953)e−x2/22

)−1

.

x 1.65 1.96 2.58 2.81 3.29 3.89 4.42

p 0.1 0.05 0.01 0.005 0.001 0.0001 0.00001

α(x) 0.481 0.468 0.437 0.411 0.391 0.345 0.302
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An Aside: Other types of conditioning

• Ancillary S rarely exist and, when they exist, can result in unnatural

conditional error probabilities (e.g., in the above example, β(x) equals

the constant 1/2 as the likelihood ratio B(x) varies from 1 to 2).

• Birnbaum suggested ‘intrinsic significance,’ conditioning defined

through likelihood concepts. This rarely works (e.g., in the above

example α(x) = 1 when B(x) varies between 0 and 1/2).

• Kiefer (1977) suggested ‘equal probability continuum’ conditioning,

which also fails in the above example.
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Generalizations of Conditional Frequentist Testing

• Berger, Boukai and Wang (1997a, 1997b) generalized to simple versus

composite hypothesis testing, including sequential settings.

• Dass (1998) generalized to discrete settings.

• Dass and Berger (2001) generalized to two composite hypotheses,

under partial invariance.

• Berger and Guglielmi (2001) used the ideas to create a finite sample

exact nonparametric test of fit.
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General Formulation (Dass and Berger, 2003 Scand. J. Stat.)

• Test H0 : X has density p0(x | η)
versus H1 : X has density p1(x | η, ξ}
on X , with respect to a σ-finite dominating measure λ.

• {p0(x | η) : η ∈ Ω} is invariant with respect to a group operation g ∈ G.

• g ◦ (η, ξ) = (g ◦ η, ξ) and {p1(x | η, ξ) : η ∈ Ω} is invariant with respect

to g for each given ξ.

• Utilize the right-haar prior, νḠ(η), on η and a proper prior π(ξ) on ξ.

• The original problem is reduced to testing distributions of the maximal

invariant, T:

H0 : T ∼ f0 versus H1 : T ∼ f1 ,

where f0(t) =
∫
p0(x | η)dνḠ(η) and f1(t) =

∫
p1(x | η, ξ)dνḠ(η)dπ(ξ).

Since these are simple distributions, the rest of the analysis proceeds as

before, and the equivalence between posterior probabilities and

conditional frequentist error probabilities holds.
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Example: nonparametric testing of fit
Berger and Guglielmi (2001, JASA)

To test: H0 : X ∼ N (µ, σ) vs. H1 : X ∼ F (µ, σ),

where F is an unknown location-scale distribution.

• Define a weighted likelihood ratio (or Bayes factor) B(x), by

– Choosing a Polya tree prior for F , centered at H0.

– Choosing the right-Haar priors π(µ, σ) = 1/σ.

• Choose S based on p-value conditioning.

• Define the conditional frequentist test as before, obtaining

TC =



if B(x) ≤ c, reject H0 and report Type I CEP

α(x) = B(x)/(1 +B(x)) ;

if B(x) > c, accept H0 and report the ‘average’

Type II CEPβ(x) = 1/(1 +B(x)),

where c is the critical value at which the two p-values are equal.
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Notes:

• The Type I CEP again exactly equals the objective Bayesian posterior

probability of H0.

• The Type II CEP depends on (µ, σ). However, the ‘average’ Type II

CEP is the objective Bayesian posterior probability of H1.

• This gives exact conditional frequentist error probabilities, even for

small samples.

• Computation of B(x) uses the (simple) exact formula for a Polya tree

marginal distribution, together with importance sampling to deal with

(µ, σ).
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Other features of conditional frequentist testing with
p-value conditioning

• Since the CEPs are also the objective Bayesian posterior probabilities

of the hypotheses,

– they do not depend on the stopping rule in sequential analysis, so

∗ their computation is much easier,

∗ one does not ‘spend α’ to look at the data;

– there is no danger of misinterpretation of a p-value as a frequentist

error probability, or misinterpretation of either as the posterior

probability that the hypothesis is true.

• One has exact frequentist tests for numerous situations where only

approximations were readily available before;

– computation of a CEP is easier than computation

of an unconditional error probability.
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• One does not need to compute (or even mention) S.

– The computation of the CEPs can be done directly, using the (often

routine) objective Bayesian approach; the theory ensures the validity of

the conditional frequentist interpretation.

– Likewise, in elementary courses, one need not introduce S. Indeed, there

is only one test

TC =


if B(x) ≤ c, reject H0 and report Type I CEP

α(x) = B(x)/(1 +B(x)) ;

if B(x) > c, accept H0 and report Type II CEP

β(x) = 1/(1 +B(x)),

where c is the critical value at which the two p-values are equal.
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• For TC , the rejection and acceptance regions together span the entire

sample space, so that one might ‘reject’ and report CEP 0.40.

One could, instead:

– Specify an ordinary rejection region R (say, at the α = 0.05 level); note

that then α = E[α(s)1R].

– Find the ‘matching’ acceptance region, calling the region in the middle a

no decision region;

– Construct the corresponding conditional test.

– Note that the CEPs would not change.
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An example of sequential conditional frequentist testing

(Berger, Boukai and Wang, 1998)

Data: X1, X2, . . . are i.i.d. N(θ, σ2), both unknown, and arrive sequentially.

To test: H0 : θ = θ0 versus H1 : θ ̸= θ0.

Note: Exact unconditional frequentist tests do not exist for this problem

A default Bayes test (Jeffreys, 1961):

Prior distribution : Pr(H0) = Pr(H1) = 1/2

Under H0, prior on σ2 is g0(σ
2) = 1/σ2.

Under H1, prior on (µ, σ2) is g1(µ, σ
2) = 1

σ2 g1(µ | σ2), where

g1(µ | σ2) is Cauchy(θ0, σ).

Motivation: Under H1, the additional parameter θ is given a Cauchy

default testing prior (centered at θ0 and scaled by σ), while the

common (orthogonal) parameter σ2 is given the usual noninformative

prior (see Jeffreys, 1961)
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Bayes factor of H0 to H1, if one stops after observing

X1, X2, . . . Xn (n ≥ 2), is

Bn = 1√
2π

[∫∞
0

(
1 + (n−1)nξ

n−1+t2n

)−n
2

(1 + nξ)
n−1
2 e

1
2ξ ξ−

3
2 dξ

]−1

,

where tn is the usual t-statistic.

A simplification: It is convenient to consider the sequential test in terms

of the sequence B1, B2, . . . , instead of the original data. We monitor

this sequence as data arrive, deciding when to stop the experiment and

make a decision.

Note: If H0 and H1 have equal prior probabilities of 1/2, then the

posterior probability of H0 is Bn/(1 +Bn).
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The conditional frequentist test: A slight modification of this Bayesian

t-test is a conditional frequentist test such that

α(s) = Pθ0(Type I error | s)

= BN

1+BN
(also the posterior probability of H0),

and the “average” Type II error is 1
1+BN

, also the posterior probability of

H1.

(The modification, T ∗
1 , is the introduction of a “no decision” region in the

acceptance region, where if 1 < BN < a, one states “no decision”.)

(Berger, Boukai and Wang, Stat.Sci 1997, Biometrika 1999)
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An Application: The data arose as differences in time to recovery between paired

patients who were administered different hypotensive agents. Testing H0 : θ = 0

versus H0 : θ ̸= 0 is thus a test to detect a mean difference in treatment effects.
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The stopping rule (any other could also be used):

If Bn ≤ R, Bn ≥ A or n = M , then stop the experiment.

Intuition:

R = “odds of H0 to H1” at which one would wish to stop and reject H0.

A = “odds of H0 to H1” at which one would wish to stop and accept H0.

M = maximum number of observations that can be taken

Example:

R = 0.1 (i.e., stop when 1 to 10 odds of H0 to H1)

A = 9 (i.e., stop when 9 to 1 odds of H0 to H1)

M = 62
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The test T ∗
1 : If N denotes the stopping time,

T ∗
1 =



if BN ≤ 1, reject H0 and report Type I CEP

α∗(BN ) = BN/(1 +BN ) ;

if 1 < BN < a, make no decision;

if BN ≥ a, accept H0 and report the ‘average’

Type II CEP β∗(BN ) = 1/(1 +BN ).

Example: a = 3.72 (found by simulation). For the actual data, the

stopping boundary would have been reached at time n = 52

(B52 = 9.017 > A = 9), and the conclusion would have been to accept

H0, and report error probability β∗(B52) = 1/(1 + 9.017) ≈ 0.100.
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Comments About the Sequential Test:

• T ∗
1 is fully frequentist (and Bayesian).

• The conclusions and stopping boundary all have simple intuitive

interpretations.

• Computation is easy (except possibly computing a, but it is rarely

needed in practice):

– No stochastic process computations are needed.

– Computations do not change as the stopping rule changes.

– Sequential testing is as easy as fixed sample size testing.

• T ∗
1 essentially follows the Stopping Rule Principle, which states that,

upon stopping experimentation, inference should not depend on the

reason experimentation stopped.

• This equivalence of conditional frequentist and Bayesian testing applies

to most classical testing scenarios.

77


