
CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

Lecture 5: Conventional Model

Selection Priors

Susie Bayarri

University of Valencia

CBMS Conference on Model Uncertainty and Multiplicity
July 23-28, 2012

1



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

Outline

• The general linear model and Orthogonalization

• Historical Conventional priors: g-priors and Zellner-Siow priors

• Desiderata for choice of model priors

• Variable selection in linear models

• A proposed new prior

• Extensions of conventional priors
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I. The General Linear Model and

Orthogonality
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The General Linear Model

Notation: with Yi = Xi1β1 + . . .+Xikβk + ϵi we have

Y = Xβ + ϵ

Y t = (Y1, . . . , Yn) ; dependent variables

βt = (β1, . . . , βk) ; regression coefficients

X [n×k] of rank k ; independent var. (design matrix)

ϵ ∼ N(0, σ2I)

Hence Y ∼ Nn(Xβ, σ2I)

Often Xi1 = 1 ; β1 called ‘intercept’ and denoted by α
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Likelihood: for observed y,X

f(y | β, σ2) =
1

(σ22π)n/2
exp{− 1

2σ2
(y −Xβ)t(y −Xβ)}

=
1

(σ22π)n/2
exp{− 1

2σ2

[
νs2 + (β − β̂)tXtX(β − β̂)

]
}

β̂ = (XtX)−1Xty ; O.L.S. estimator and MLE

ν = n− k ; degrees of freedom

s2 = 1
ν (y −Xβ̂)t(y −Xβ̂) ; residual s.o.s

Properties

β̂ sufficient for β given σ2, (β̂, s2) sufficient for (β, σ2)

β̂ ∼ Nk(β, σ
2(XtX)−1), νs2⊥β̂ and νs2

σ2 ∼ χ2
(ν)
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Orthogonal parameters

Important concept in ‘conventional priors’ derivations:

• Y | θ ∼ f(y | θ)

• J(θ) ; (expected) Fisher Information matrix :

J(θ) = E
(
− ∂2

∂θi∂θj
log f(y | θ)

)
.

• If θ = (α,β), partition J(θ) as

J(θ) =

 Jα(θ) Jα,β(θ)

Jα,β(θ) Jβ(θ)


• Definition (Jeffreys):

Parameters α and β are (globally) orthogonal if

Jα,β(θ) = 0, ∀θ.
6
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‘similar’, ‘common’ parameters

• Model-specific parameters do not have, in general, the same

meaning and should not in general be identified the same.

• Ignoring this principle produces erroneous prior assessments:

M1 : f1(y | α) = f(y | α,0)

M2 : f2(y | α,β) = f(y | α,β).

• It is tempting (and frequent) to assess a unique prior under M2,

π2(α,β) (probably assuming independence) and then deduce

π1(α), either by

– conditioning (may not be invariant under transformations)

– marginalizing (McCulloch y Rossi 92, Verdinelli and Wasserman 93)

• This is usually erroneous, since α has different meanings in M1

and M2
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Equally identified, common parameters

• For truly subjective assessments, if priors under both models are

similar, then similar ‘meaning’ and same ’names’ seems fine.

• Common ’Objective assessments’ must rely on different criteria.

• A rigorous criteria is when ‘common’ parameters have an invariant

structure (Berger, Pericchi and Vasarhski), and then use of right

Haar prior is justified.

• A less justifiable, but frequent practice is the following

‘Conventional’ assumption: “If under M2 : f2(y | α2,β),

α2 and β are orthogonal, then α1 in M1 and α2 in M2 can be

identified the same (α, say) and then

π1(α), π2(α,β) = π1(α)π(β | α),

is a suitable structure for prior assessment”
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But there does not seem a serious justification for this practice:

Berger and Pericchi (1996) write:

“That use of orthogonal parameters overcomes this difficulty is a belief in

the statistical folklore and is undoubtedly true in certain asymptotic

senses, but we have not seen a clear Bayesian argument as to why this

should be so. The other problems with orthogonalization are (i) it is

frequently extremely difficult or impossible to find orthogonal parameters,

and (ii) orthogonal parameters typically have no intuitive meaning, and so

models expressed in terms of subsets of orthogonal parameters often have

no meaning. Nevertheless, the use of orthogonal parameters, when

possible, appears to be a quite effective tool. Jeffreys (1961) provides a

number of convincing examples. For a modern successful use of the idea,

see Clyde and Parmigiani (1995)”.

see also Clyde and George (2004?), and others ...
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• However, these difficulties are much milder (and often absent) in the

linear models scenario

• A different difficulty is that orthogonal parameters do not imply same

conventional priors under both models. It is true under certain

assumptions (met in the Normal scenario) for Jeffreys priors:

Result 1. Let πN
1 (α1) and πN

2 (α2,β) be Jeffreys priors, with α2 and

β orthogonal. If Jα2(α2,β) = G(α2), then

πN
2 (α2,β) = πN

1 (α2)|Jβ(α2,β)|1/2.

• The condition Jα2(α2,β) = G(α2) does not hold in general

(although it does in the Normal case); note that |Jβ(α2,β)|1/2 is

typically improper and so cannot be used.

• In spite of all this, the “Conventional Assumption” is typically used in

the Linear Model after reparameterization to achieve orthogonality.
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Example: let

f(y | α, β, σ) = Nn(y | α 1n + βX, σ2In)

with X ′ = (x1, . . . , xn). To choose between models:

M1 : f1(y | α1, σ1) = f(y | α1, 0, σ1)

M2 : f2(y | α2, β, σ2) = f(y | α2, β, σ2).

Fisher information matrix for (α, β, σ) is:

J(α, β, σ) =
1

σ4


n

∑
xi 0∑

xi

∑
x2
i 0

0 0 2nσ2

 .
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σ is orthogonal to (α, β) but α is not orthogonal to β. We

re-parameterize by considering Z = X − x̄1n and

(γ, β, σ) = g(α, β, σ) = (α+ βx̄, β, σ) resulting in the

re-parameterized model:

f o(y | γ, β, σ) = Nn(y | γ 1n + βZ, σ2In),

with Fisher information matrix

Jo(γ, β, σ) =
1

σ4


n 0 0

0
∑

z2i 0

0 0 2nσ2

 ,

so that β and (γ, σ) are orthogonal.
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This suggests using πo
1(γ, σ) = πo

2(γ, σ) = 1/σ in both models (with

πo
2(β | γ, σ) to be determined by another method). Note that these

priors transform back to the original parameterization as

π1(α1, σ1) = πo
1(α1, σ1) and

π2(α2, β, σ2) = πo
2(α2 + βx̄, β, σ2)

∣∣∣∣∣∣∣∣∣
1 x̄ 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣
= πo

2(α2 + βx̄, β, σ2) .
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II. Historical conventional priors:

g-Priors and Zellner-Siow Priors
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(traditional) Conventional arguments for πi
(Jeffreys, Zellner-siow, ...)

Test M0 : Nn(y | X0β0, σ
2In) vs Mi : Nn(y | X0β0 +X iβi, σ

2In)

For “old” parameters (β0, σ) , π(β0, σ)

– Orthogonalize βi and (β0, σ) (in Fisher sense)

– Intuitively argue that in this case, (β0, σ) could be taken to

have similar meaning in all models

– Arguing that then a common prior distribution π(β0, σ)

could be taken under each of the models.

– Because of small impact of the common prior, Jeffreys

argued for the objective estimation prior (with a common

arbitrary constant that cancels out in BF’s

Intuitively sensible but ad-hoc arguments; not formally justified.
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For “new” parameters βi : πi(βi | β0, σ) when comparing

model Mi vs M0, should be

– proper to avoid the indeterminacy of BF

– symmetric around the null β0 = 0

– scaled by σ, and oriented like the likelihood

– with no moments (flat tails result in information consistency)

– Jeffreys: For n = 1 the Bayes factor should be one (since a single

observation allows no discrimination between the two models).

J-Z-S proposal Jeffreys (for normal mean) Zellner-Siow (for

variable selection) argue that the simplest prior with the above

requirements is

(the improper 1
σ
for ‘common’ parameters) × (a specific Cauchy

prior for ’model specific’ parameters)

16
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Zellner g-priors

• A conjugate prior proposed by Zellner (1986) often used for

model selection

• Let M : Y = Xβ + ϵ, ϵ ∼ Nn(0, σ
2In)

• g-prior: π(σ2) = 1
σ2 π(β | σ2) = Nn(β | 0, g σ2 (X tX)−1)

Conjugate/objective prior with m0 = 0 and V 0 = g (X tX)−1

• some choices for g:

– g fixed, typically at g = n (since g (X tX)−1 then ‘stabilizes’)

– g estimated via empirical-Bayes (ĝ = (
ˆβ
t
(XtX)

ˆβ
ks2

− 1)+).

• predictive distribution is closed form:

m(y) =
Γ(n/2)

2πn/2(1 + g)k/2

(
yty − g

1 + g
ytX(XtX)−1Xty

)−n/2

17
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But g-priors have undesirable features when used for
model selection

Assume that, in the previous scenario, we want to test

M0 : β = 0 vs M1 : β ̸= 0

It can be shown that as β̂ → ∞ (that is, overwhelming evidence

against M0), B01 → (1 + g)(k−n)/2 a non-zero constant

This was the main reason that motivated Jeffreys to use the

Cauchy, later generalized by Zellner-Siow ; those priors produce

BF for M0 → 0 as evidence against M0 → ∞

This however is only serious for small n (compare to parameter

dimension) and often one needs fast computations of marginals

18
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Zellner-Siow basic proposals (orthogonal case)

• to choose between

M1 : f1(y | β1, σ) = Nn(y | X1β1, σ
2In)

M2 : f2(y | β1,βe, σ) = Nn(y | X1β1 +Xeβe, σ
2In),

with X1 : n× k1, Xe : n× ke full rank

• alternatively, to test: H1 : βe = 0 versus H2 : βe ̸= 0

• Assume X t
1Xe = 0 ; ‘common’ parameters β1, σ are

orthogonal to ‘new’ parameters βe in M2
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• ZS (1980, 1984) prior πi under Mi, i = 1, 2:

– common’ parameters have same improper prior:

π1(β1, σ) = π2(β1, σ) = σ−1,

– conditionally on the ‘common’, the non-common βe has a

(proper) Cauchy prior:

π2(βe | β1, σ) = Cake(βe | 0, nσ2(X t
eXe)

−1)

20



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

intuitive arguments for πi(β1, σ)

(i) Common orthogonal parameters have same meaning across

models ; can be given the same prior

(ii) Bayes factor not very sensitive to the (common) prior used for

common orthogonal parameters

(Jeffreys, 1961; Kass and Vaidyanathan, 1992)

(i) and (ii) ; fine to assess same improper prior for common

(orthogonal) parameters

Note: arbitrary constants cancel out in Bayes factor

For a rigorous argument based on invariance see Berger, Pericchi

y Varshavsky (1998).

‘Non common’ βe can not have an improper prior
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intuitive arguments for π2(βe | σ)
ZS Cauchy prior in the same spirit as Jeffreys proposal:

(i) centered (spiked) and symmetric around the simpler model (0) in

this case

(ii) has no moments

(some advantages of priors with no moments for model selection are

reviewed in Liang et al. 2007)

(iii) ‘right’ scale ; oriented like the likelihood and wider

(so the prior does not ‘wash-out’ the likelihood, which is very easy in

high dimensional problems)

(iv) it is the IGa(.5, .5) scale mixture of the g-prior with g = n

Crucial: ZS prior is invariant to scale changes in the X i.

22



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

ZS-priors: non orthogonal case

When X t
1Xe ̸= 0 ; reparameterize the original model

Nn(y | X1β1 +Xeβe, σ
2In)

to orthogonality resulting in the reparameterized model:

Nn(y | X1γ + V βe, σ
2In)

with new parameters:

(γ,βe, σ) = g(β1,βe, σ) = (β1 + (Xt
1X1)

−1Xt
1Xeβe, βe, σ)

and new design matrix for the ‘extra’ parameter:

V = (In − P 1)Xe, P 1 = X1(X
t
1X1)

−1X t
1

23
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• The original model selection problem can be equivalently

formulated as that of choosing between:

M0
1 : f0

1 (y | β1, σ) = Nn(y | X1γ, σ
2In)

M0
2 : f0

2 (y | β1,βe, σ) = Nn(y | X1γ + V βe, σ
2In),

same ’names’ (γ, σ) are used in both models since (γ, σ) ⊥ βe

• Using JZS priors proposals for the orthogonal case and

transforming back, gives JZS priors in the original formulation:

π1(β1, σ) = π2(β1, σ) = σ−1,

π2(βe | β1, σ) = Cake(βe | 0, nσ2(V tV )−1),
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• In variable selection in linear models, it is common practice to

assume (without lost of generality) that

– Regressors measured as deviations from their sample means

(1tX i = 0, i = 1, e)

– Orthogonal reparameterization, so that X t
1Xe = 0

• We have explicitly provided the required reparameterization, but

when implementing JZS priors (Bayes factors), there is no need

to worry about orthogonality since these priors are valid for both

orthogonal and non-orthogonal situations

• JZS priors have desirable properties (see Berger and Pericchi,

2001, and next slides). In particular JZS priors are consistent

whereas other default Bayesian methods are inconsistent (see

Berger, Ghosh and Mukhopadhyay, 2003)
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Z-S priors for multiple model selection

Suppose all linear sub-models are under consideration. Z-S priors are

defined for comparing one model to another, so two obvious choices:

• Use the Z-S Bayes factors of each model to the full model; but

this does not correspond to an actual Bayesian analysis.

• Use the Z-S Bayes factors of each model to the simplest model;

this does correspond to an actual Bayesian analysis. When the

simplest model is the intercept only model with X1 = 1n, the

resulting prior for the models is

π0(β1, σ) = π1(β1, σ) = σ−1,

πe(β1,βe, σ) = σ−1Cake(βe | 0, nσ2(V tV )−1),

where V = (In −X1(X
t
1X1)

−1Xt
1)Xe = (In − n−11n1

t
n)Xe.

26



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

Computation for Z-S priors

Let X2 = (X1, Xe); SSEi, residual sums of squares:

SSEi = yt(In − P i)y, P i = Xi(X
t
iXi)

−1Xt
i, i = 1, 2,

Writing the Cauchy prior as a scale mixture of normal priors, the

Z-S Bayes factor is can be expressed as the one-dimensional integral:

B21 =

∫ (
1 + t n

SSE2

SSE1

)−(n−k1)/2

(1 + t n)(n−k)/2 IGa(t | 1
2
,
1

2
) dt

=

∫ (
1 + t

SSE2

SSE1

)−(n−k1)/2

(1 + t)(n−k)/2 IGa(t | 1
2
,
n

2
) dt .

NOTE: This is valid whether or not the problem has beenn

orthogonalized, and whether or not the matrices are full-rank (later)
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Liang et al. (2007) ; very good Laplace approximation to B21:

B21 ≈
√
2π ṽ

(
1 + n t̂

SSE2

SSE1

)−(n−k1)/2

(1 + n t̂)(n−k)/2 IGa(t̂ | 1
2
,
1

2
),

where t̂ is the (real) positive solution of the cubic equation:

t3 R
(
k1 − k − 3

)
+ t2

(
− k + n− 3 + R (k1 − 3)

)
+ t

(
n− 3 + nR

)
+ n = 0,

where R = SS2/SS1 , and

ṽ =
(
− d2

dt2
logL(t)IGa(t | 1

2
,
1

2
)
∣∣∣
t=t̂

)−1/2

Paulo (2003) shows, through an extensive simulation study, the

accuracy of the approximation
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.

III. Desiderata for Choice of Model

Priorsa

.
abased on a recent paper with J. Berger, A. Forte, and G. Garcia-

Donato
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Foundations of Objective Bayesian Model
Selection

• there have been many efforts (over more than 30 years) to

develop ‘objective model selection priors,’

• several methodologies have been proposed to derive these

– the conventional priors (Jeffreys 1961; Zellner and Siow 1980)

– the Intrinsic priors (Berger and Pericchi 1996; Moreno et al.

1998; O’Hagan 1997),

– the Expected posterior priors (Pérez and Berger 2002),

– the Integral priors (Cano et al. 2008),

– the Divergence based priors (Bayarri and Garćıa-Donato 2008)

....
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• no single criterion has emerged as dominant in defining objective

prior distributions

• For the most part, these proposals have started with a good

idea, used it to develop the priors, and then studied the behavior

of the priors.

• The conventional priors of Jeffreys and Z-S are perhaps the

most successful and widely used. They differ from the previous

strategy in that

– They first list a serie of desiderata that the objective priors for

the problem should have

– See if they can find a prior matching these desiderata
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Our main goal (inspired by Jeffreys)

Compiling, formally formulating and extending the various

criteria that have been deemed essential for model selection

priors and seeing if these criteria can essentially determine

the priors
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Notation for general model selection

• observe a vector y ∼ f(y | α,β) of size n

• data can come from one of the N models:

M0 : f0(y | α) = f(y | α,β0)

Mi : f1(y | α,β) = f(y | α,β), i = 1, 2, . . . , N − 1

α (the ‘common’ parameter) is of dimension k0,

βi (model specific parameters) have dimension ki.

• priors:

– under the null M0: π0(α)

– under Mi: πi(α,βi) = πi(α) πi(βi | α).

•

33
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Desiderata in Prior Selection

• Jeffreys’ desiderata (and extensions) are intuitively sensible but

mainly ad-hoc arguments: difficult to use

• We formalize the most general and compelling of the various

criteria that have been used in the literature a , provide formal

formulations and suggest a new criterion

• We have organized the criteria in four blocks:

– I. Basic criteria,

– II. Consistency criteria,

– III. Predictive matching criteria,

– IV. Invariance criteria.
asome few modern references relevant to development of such criteria:

Fernández et al. (2001); Berger and Pericchi (2001); Berger et al. (2003); Liang
et al. (2008); Moreno et al. (2009); Casella et al. (2009)
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I. Basic criteria

Priors for the non-common parameters βi

– should be proper, otherwise Bi0 is ill-defined

– cannot be arbitrarily vague, since the arbitrary scale of

vagueness appears as a multiplicative term in the Bayes factor,

again rendering the Bayes factor arbitrary

This elemental desideratum is reflected in the following criterion

Criterion 1 - Basic

The conditional priors πi(βi | α) must be proper

(integrating to one) and cannot be arbitrarily vague

35
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II. Consistency criteria

we consider two primary consistency criteria, plus a natural third

The first criterium establishes that the Bayes procedure will select

the right model with enough data

Criterion 2 - Model selection consistency -

If data y have been generated by Mi, then the posterior

probability of Mi should converge to 1 as the sample size

n → ∞.

This is an obvious criterium to require, and indeed model selection

consistency is generally satisfied a (but not always!) so it is not

usually very useful to characterize priors.

a(see e.g. O’Hagan 1994)
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The second criterium stablishes that, for any fixed sample size, if the

evidence in favor of Mi (and against M0) grows to ∞, then the

Bayes factor Bi0 should also grow to ∞

Criterion 3 - Information consistency:

For any model Mi, and sample size n, if the likelihood ratio

arising from comparing Mi to M0 goes to ∞, then Bi0

should → ∞.

In normal linear models the criteria is equivalently formulated

in terms of the F (or t) statistics growing to infinity

Jeffreys required (for the normal mean testing) Bi0 → ∞ as

ȳ → ∞, and let him to recommend the Cauchy prior instead of

the normal
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A third type of consistency is the formalization of Berger & Pericchia

requirement that a model selection procedure should correspond, at

least approximately (or asymptotically) to a genuine Bayes procedure

(in particular, with a fixed prior, independent of the data, and of n)

Criterion 4 - Intrinsic prior consistency:

Consider πi(βi | n,β0, σ) for sample size n. Then, as

n → ∞, πi(βi | n,β0, σ) should converge to a proper,

fixed, ‘intrinsic’ prior πI
i (βi | β0, σ)

If there is such a limiting prior it is called an intrinsic prior

.

asee B&P 2001 for extensive discussion and previous references.
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III. Predictive matching criteria

• Perhaps the most crucial aspect of objective model selection

priors is that they be appropriately ‘matched’ across models of

different dimensions

• Jeffreys argued that with ‘minimal sample size’ one could not

discriminate between the two hypotheses and the Bayes factor

should then be 1. Argument formalized in Berger & Pericchi 2001

Criterion 5 - Predictive matching:

For samples y∗ of ‘minimal size’, in comparing Mi with Mj,

one should have model selection priors such that mi(y
∗)

and mj(y
∗) are close. Optimal, but not always possible, is

exact predictive matching: mi(y
∗) = mj(y

∗).

.
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• In Berger and Pericchi (2001), minimal sample size n∗ was

defined as the smallest sample size for which

0 < mi
N(y∗) < ∞

for all models Mi when objective estimation priors πN
i under Mi

are used

• BP01 minimal sample size typically equals the number of

observations needed for all parameters to be identifiable.

• For model selection minimal sample size should be defined

relative to the model selection priors being utilized. We propose

general definition
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Definition: A Minimal training sample y∗
i for

{Mi, πi} is a sample of minimal size n∗
i ≥ 1 such that

0 < mi(y
∗) < ∞

Some consequences

• Because of the Basic criteria this new n∗ is smaller than the

B&P01 n∗; the predictive matching criteria becomes a weaker

condition.

• In problems with more than 2 competing models (e.g variable

selection) the concept of minimal size is not so sensitive to the

dimension of the largest model.
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• Exact predictive matching is usually understood to imply that

mi(y
∗) = mj(y

∗) for all entertained models, and with the same

MTS size n∗

• The new (weaker) definition allows entertaining partial

comparisons resulting in exact predictive matching among

interesting subsets of models

• We highlight two types of this kind of ‘partial’ exact predictive

matching which are of particular relevance for the variable

selection problem

Definition: Null predictive matching The model

specific priors are null predictive matching if all pairs

{Mi, πi} and {M0, π0} are exact predictive matching for all

minimal training samples y∗
i for {Mi, πi}.
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• This concept formalizes the idea that data of minimal size not

allow one to distinguish between the null and alternative models

• NOTE: This null matching is entertained for possibly different

ni∗, so whereas all models can be matched to the null, it might

be that no other two models of differing dimensions are matched.

• A very interesting concept of ’exact’ (but partial) predictive

matching occurs when only models of the same complexity are

required to be matched

Definition: Dimensional predictive matching The

model selection priors are dimensional predictive matching if

each of the model/prior pairs {Mi, πi} and {Mj, πj} of the

same complexity/dimension (i.e. ki = kj) are exact

predictive matching for all minimal training samples y∗
i for

models of that dimension.
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IV. Invariance criteria

• Invariance has played an important role in objective Bayes

methods.

• It says that if the problem is invariant under some

transformations, the objective priors should leave them invariant.

• We introduce two invariant criteria: the first one is rather

obvious, and the second is a new criterium with important

consequences

Criterion 6 - Measurement invariance:

The units of measurement used for the observations or

model parameters should not affect the Bayesian answers.

The second refers to a much more powerful, but special type of

invariance:
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Criterion 7: Group invariance criterion (new):

If all models are invariant under a group of transformations

G0, then the conditional distributions, πi(βi | α), should be

chosen in such a way that the conditional marginal

distributions

fi(y | α) =

∫
fi(y | α,βi) πi(βi | α) dβi

are also invariant under G0.

• Indeed, the πi(βi | α) could hardly be called objective model

selection priors if they eliminated an invariance structure that

was possessed by all of the original models.

• Note: If it exists, G0 is the relevant group of transformations for

the null model M0.
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• Otherwise stated we ask π(βi | α) to be in ‘agreement’ with the

structure of the null model

• This can also be viewed as a formalization of Jeffreys’

requirement that the prior for a non-null parameter should be

“centered at the simple model.”

A crucial implication of the Group Invariance Criteria, which could

be formulated as part of the criteria is the following:

Criterion 7, Group invariance criterion (cont.): prior for the

common parameters α in each model should be assigned

the right-Haar prior corresponding to the group of

transformations.
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• Indeed, with the group invariance criterion, the problem becomes

that of selecting among the models:

f0(y | α), fi(y | α), i = 1, . . . , N

with same dimension and common invariance structure.

• In this situation choosing πi(α) = πH(α) where πH(·) is the
right-Haar density of G0 guarantees (under commonly satisfied

conditions) exact predictive matching (Berger et al, 1998)

• Thus, for invariant models, the combination of the Group

invariance criterion and (exact) Predictive matching criterion

allows complete specification of the prior for α in all models.

• Most surprisingly, this argument does not require orthogonality

of α and βi
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Example: testing a normal standard deviation

• Let y be an iid sample of a normal population with µ, σ unknown

• To test: H0 : σ = σ0, vs H1 : σ ̸= σ0

• Need to assess objective priors

π0(µ) and π1(µ, σ) = π1(σ | µ)π1(µ)

implications of several criteria

• Basic: π1(σ | µ) must be a proper and not arbitrarily vague

• Invariance: M0 and M1 are invariant under the group

G0 = {g ∈ R} with g(y) = y + g1n

Result: π1(σ | µ) satisfies the invariance criterion if and

only if π1(σ | µ) = h(σ)
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• Predictive matching: The minimal sample size for

π1(µ, σ) = h(σ)π1(µ) is n
∗ = 1.

Result: The priors π0(µ) = π1(µ) = πH(µ) where πH(µ) = 1

(right Haar measure for G0) are exact predictive matching.

• Consistency: For fixed n, Λ10 → ∞ if and only if n ≥ 2 and

either S → ∞ or S → 0.

Result: Under these conditions, B10 also → ∞ if and only if∫∞
0

σ1/2 h(σ) dσ = ∞.

Notice: this is a stronger requirement than having no moments

and is not met, for instance, by the conjugate prior.
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In summary:

The class of priors meeting the criteria satisfy

{(π0, π1) : π0(µ) = 1, π1(µ, σ) = h(σ)}

with ∫ ∞

0

h(σ) dσ = 1,

∫ ∞

0

σ−1h(σ) dσ = ∞.
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Example: testing a Gamma shape parameter

• Let y be an iid sample from a Gamma density with mean µ and

shape parameter α : f(y | α) ∝ yα−1 e(−αy)/µ

• To test: H0 : α = α0, H1 : α ̸= α0,

• Need to assess priors π0(µ) and π1(µ, α) = π1(α | µ)π1(µ)

implications of several criteria

• Basic: π1(α | µ) must be a proper and not arbitrarily vague

• Invariance: M0 and M1 are invariant under the group

G0 = {g ∈ (0,∞)} with g(y) = gy and g(y) = y + g1n

Result: π1(α | µ) satisfies the invariance criterion if and

only if π1(α | µ) = h(α).
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• Predictive matching: The minimal sample size for

π1(µ, α) = h(α)π1(µ) is n
∗ = 1.

The priors π0(µ) = πH(µ) and π1(µ) = πH(µ) where

πH(µ) = 1/µ (ie the right-Haar measure for G0), are exact

predictive matching.

• Consistency: For fixed n, Λ10 → ∞ if and only if n ≥ 2 and

either α̂ → ∞ or α̂ → 0.

Under these conditions, B10 also → ∞ if and only if∫∞
1

α1/2 h(α) dα = ∞.

Notice: this is a stronger requirement than having no moments.
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In summary:

The class of priors meeting the criteria satisfy

{(π0, π1) : π0(µ) = 1, π1(µ, α) = h(α)}

with ∫ ∞

0

h(α) dα = 1,

∫ ∞

1

√
αh(α) dα = ∞.
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IV. Variable Selection in Linear Models
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Variable selection as model selection

• Observations Y = (Y1, . . . , Yn)
t explained by, at most, k0 + p

covariates

• Simplest model contains k0 pre-chosen covariates:

M0 : Y ∼ Nn(X0β0, σ
2I)

• The other 2p − 1 models correspond to additionally adding each

of the 2p − 1 non-null subsets of the remaining p covariates:

Mi : Y ∼ Nn(X0β0 +X iβi, σ
2I)

• (β0, σ
2) ‘occur’ in all models (common parameters), whereas

βi do not, i = 1, . . . , 2p − 1
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Objective Bayes model selection

• Is based on posterior probabilities for each model:

P (Mi | y) =
mi(y)P (Mi)∑2p

l=0ml(y)P (Ml)
=

[
1 +

∑
l ̸=i

πliBli

]−1

• πli is prior odds Pr(Ml)/Pr(Mi)

• Bli is Bayes factor ml(y)/mi(y)

mi(y) =

∫
fi(y | βi, β0, σ) πi(βi, β0, σ) d(βi, β0, σ),

• Derive the 2p − 1 Bayes factors B0i and compute all pairwise

Bayes Factors as Bli = Bl0B0i = B−1
0l B0i
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The Zellner-Siow Priors
In the variable selection problem Zellner-Siow’s prior

πZS
i (βi,β0, σ) =

1

σ
Cauchyki(βi | 0, nσ2(V t

iV i)
−1)

with V i = (In −X0(X
t
0X0)

−1Xt
0)Xi satisfies

• Basic criterion: The conditional priors πi(βi | β0, σ) are proper

and are not arbitrarily vague.

• Model selection consistency and Information consistency are

established in Liang et. al. (2008).

• Intrinsic prior consistency holds if limn→∞ n−1 V t
lV l = Λl for

positive definite Λl. This would trivially happen if either there is

a fixed design with replicates, or when the covariates arise

randomly from a fixed distribution having second moments.
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• Predictive matching occurs for samples of size k0 + 1.

Surprisingly, it is also the case that mi(y
∗) = m0(y

∗) for all

samples of size k0 + ki, and this is only true if the conditional

covariance matrix in the prior is proportional to (V t
iV i)

−1.

• Measurement invariance is easily seen to be satisfied with the

choice (V t
iV i)

−1 for the conditional covariance matrix.

• Group invariance, with respect to the location-scale group, holds

for the πi(βi | β0, σ), and the common right-Haar prior

π(β0, σ) = 1/σ is used for all models.

The only negative feature of the Zellner-Siow prior is it does not lead

to closed form answers, though only one-dimensional integrals are

required.
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The Robust prior

We now characterize which classes of priors satisfy the different

desideratum and the implications that they have in the choice of

priors. We call our ultimate choice the The Robust Prior

• The chosen flat-tailed prior is a generalization of proposals by

Strawderman (1971, 1973) and Berger (1976, 1980, 1985) in

the context of minimax and robust Bayes estimation

• Our proposal for πi(βi | β0, σ), the robust prior is

πR
i (βi | β0, σ) =

∫ 1

0
Nki(βi | 0, (λ−1ρi (b + n) − b)Σi) a λ

a−1 dλ,

where Σi = Cov[β̂i] = σ2(V t
iV i)

−1.

• a, b, ρi are chosen to achieve optimal properties for model selection
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a scale mixture(s) of normals

as many other conventional priors for model selection, our robust

prior can be expressed as an scale mixture of normals:

πR
i (βi | β0, σ) =

∫ ∞

0
Nki(βi | 0, g σ2 (V t

iV i)
−1) pn(g) dg

• For the robust:

pRn (g) =

a(ρi(b+ n))a(g + b)−(a+1) g > ρi(b+ n)− b

0 otherwise

• For Zellner hZS
n (g) = Ga−1(g | 1

2 ,
n
2 ), g ≥ 0

• The consistent choice in Liang et al (2008) is a particular case of the

Robust prior for a = 1/2, b = n, and ρi = 1/2.

• Berger (1985)’s robust prior for estimation has a = 1/2, b = 1, and

ρi = (ki + 1)/(ki + 3)
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They have Student t tails, and for a ≤ 1/2, no moments
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The Robust priors:

πR
i (β0,βi, σ) = σ−1 ×

∫ ∞

0
Nki(βi | 0, gΣi) p

R
i (g) dg,

• Also satisfy all the desiderata.

• Yield closed form Bayes factors

Bi0 =

[
n+ 1

ki + k0

]− ki
2 Q

−(n−k0)/2
i0

ki + 1
2F1

[ki + 1

2
;
n− k0

2
;
ki + 3

2
;
(1−Q−1

i0 )(ki + k0)

(1 + n)

]
,

where 2F1 is the standard hypergeometric function and

Qi0 = SSEi/SSE0

is the ratio of the sum of squared errors of models Mi and M0.

• Adjust for the fact that n is not always the effective sample size for

the parameters of the models.
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An invariant argument for “common” parameters
we show when the (conditional) marginal likelihood, mR

i (y | β0, σ) is

invariant, and hence the right Haar prior produces well defined BF’s:

Theorem: The likelihood mi(y | β0, σ) for (β0, σ) under model

Mi for i = 1, . . . 2p − 1 derived by integrating out βi with any prior

of the form: (iif)

πi(βi | β0, σ) = σ−kifi(
βi

σ
),

is invariant under the group of transformations

G = {gc,b : gc,b(y) = cy +X0b; b ∈ ℜk0 ; c > 0}

m0 is also invariant under G

Corolary: The right Haar measure for this group, namely 1/σ, can then

be used as priors for these parameters, under each of the models, when

deriving Bayes factors for model selection.
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Important remarks

• We have justified use of the default independent Jeffreys prior for use

as prior for ‘common’ parameters in a large class of variable selection

problems

• Justification does not rely on ad-hoc arguments: as a result of

invariance, π(β0, σ) = 1/σ produce well defined Bayes factors

• σ needs to be a scale parameter in πi, hence we have also formally

justified the common (but not formally justified) practice of scaling

the prior on βi by σ, the scale of the model. Note that it also is

centered at 0 and do not depend on β0

• The Robust Prior satisfy the Group invariance criterion
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Arguments for priors on the “new” parameters

From now on, we consider an important particular case of priors

satisfying the invariance criteria, that is, of priors of the form

πi(β0,βi, σ) = σ−1−ki hi(
βi

σ
)

namely, the scale mixture of normals: (Basic criterium)

πi(β0,βi, σ) = σ−1 ×
∫ ∞

0
Nki(βi | 0, g σ2Σi) pi(g) dg,

The robust prior being a particular case for

• Σi = Cov(β̂i) = (V t
iV i)

−1

• pi(g) = pRi (g)
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argument for the particular form of hi(·)
• It is a very rich, ‘natural’ class of densities symmetric about 0

• only scale mixtures of normals seem to have any possibility of

yielding Bayes factors that have ’easy’ expressions (not

necessarily close-form, like ZS)

argument for the form of the mixing density

The mixture density pRi (g) encompasses virtually all a of the mixtures

that have been found which can lead to closed form expressions for

Bayes factors (Zellner-Siow priors have a different mixing) .

aMaruyama and George, 2008, being an interesting exception
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arguments for the choice of the conditional scale matrix

• A standard argument: The Measurement Invariance criterion

if Σi = (V t
iV i)

−1, Bayes factors will be unaffected by

changes in the units of measurement of either y or the

model parameters

But there are many other choices with this property

• A quite surprising Predictive matching result:

Result: Scale mixture of normals with this Σi are null

predictive matching and dimensional predictive matching

for samples of size k0 + ki, and no choice of the

conditional scale matrix other than (V t
iV i)

−1 (or a

multiple) can achieve this predictive matching
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Selecting hyperparameters of the robust prior

• Recap: to meet previous desiderata, we are considering priors of

the form:

πi(β0,βi, σ) = σ−1 ×
∫ ∞

0
Nki(βi | 0, g σ2 (V t

iV i)
−1) pi(g) dg,

• our proposal, The robust prior is the particular case for

pi(g) = pRi (g) = a(ρi(b+n))a(g+ b)−(a+1) for g > ρi(b+n)− b

• Need to pick ‘good’ values for the hyperparameters a, b and ρi

• The values for the hyperparameters that will be recommended

are a = 1/2, b = 1 and ρi = (ki + k0)
−1. The arguments

justifying this specific recommendation follow.
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Implications of the consistency criteria

1.- Model selection consistency

• Recall: as n → ∞, probability of correct model → 1

• A key assumption: models are asymptotically differentiated

lim
n→∞

βt
iV

t
i(I − P j)V iβi

n
= bj ∈ (0,∞) Fernández et al. 01

where P j = V j(V
t
jV j)

−1V t
j and Mi is true model

• Model selection consistency results if pi(g) are proper

densities such that limn→∞
∫∞
0
(1 + g)−ki/2 pi(g) dg = 0 ,

Robust Priors Result : If limn→∞ ρi (b+ n) = ∞, then

the Conventional Robust Bayes factors are MS consistent
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2.- Intrinsic prior consistency

• Recall: asymptotically, MS procedures should be Bayesian,

corresponding to a fixed, intrinsic prior

• another key assumption related to ‘differentiated models’ above:

limn→∞
1
n
V t

lV l = Ξl , for some positive definite matrix Ξl

• This would trivially happen if either there is a fixed design with

replicates, or when the covariates arise randomly from a fixed

distribution having second moments.

Robust prior result:if ’key assumption’ holds, a and ρi

do not depend on n, and b
n
→ c , then the conditional

robust prior converges to a fixed intrinsic prior
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3.- Information consistency

Recall: for a fixed n, as the support in the data for Mi grows to ∞,

B01 should go to 0

Robust prior result: If ρi ≥ b/(b+n), The Bayes factor,

BR
i0 is information consistent if and only if n ≥ ki + k0 + 2a

Consequence : If 0<a≤1/2, then all 2p − 1 Bayes

factors BR
i0 are information consistent for n ≥ p+ k0 + 1.

Summary: The three consistency criteria are satisfied by the robust

prior if a and ρi do not depend on n, limn→∞
b
n
= c ≥ 0,

limn→∞ ρi (b+ n) = ∞, and n ≥ ki + k0 + 2a
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Close-form Bayes factors

Remarkably, the Conventional Robust priors produce marginal

likelihoods (and hence Bayes factors) in closed form, which is

particularly simple for b=1

Result : For b = 1, the Conventional Robust Bayes factors are:

BR
i0 = Q

−n−k0
2

i0

2a

ki + 2a
(ρi (n+ 1))−

ki
2 HGi0,

where HGi0 is the hypergeometric function of one variable:

HGi0 = 2F1

[
a+

ki
2
;
n− k0

2
; a+ 1 +

ki
2
;
1−Q−1

i0

ρi (1 + n)

]
.

and Qi0 = SSEi/SSE0 is ratio of residual sums of squares
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• Thus computation with robust priors with b=1 is remarkably

simpler than with other flat-tailed priors

– BF’s for robust priors with b ̸= 1 while still in close form (in

terms of the Apell function), are considerably more complex

– BF’s for student priors can not be expressed in closed form

• This was a main motivation for its use in robust Bayesian

analysis

• This is a very appealing characteristic specifically for problems

with huge model spaces
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A specific proposal:
a = 1/2, b = 1, ρi = (k0 + ki)

−1

We choose specific values for the hyperparameters a, b, ρi so

resulting procedure has desirable properties

Choosing a = 1/2: behavior on the tails

– gives πR
i (βi | β0, σ) with no moments

– results in information consistency of all Bayes factors for the

minimal (frequentist) sample size n ≥ p+ k0 + 1

– it is the largest value of a with this property ; avoids too

conservative a procedure

– This is the choice in Berger(80) and Liang et al. (08); also, the

resulting πR
i has Cauchy tails (as in Jeffreys, ZS)
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Choosing b = 1: computational convenience

• It gives (by far) the simplest computation of Bayes factors (Apell

function is more complex and much less available in software)

• Bayes factors are, in general, considerably robust to choice of b

(and the intrinsic prior does not depend on b)

• Significant sensitivity only can occur only when both

– data is extremely compatible with M0

– b is very close to n

• and even this only occurs for some values ρi:

– Liang et al. 08’choices does have this behavior, but the

mixing density then has an unbounded spike at 0

– Berger 85’s choice produces remarkably insensitive BF’s for

all choices of b (even for b close to n)
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Choosing ρi = (1 + k0 + ki)
−1]

• ρi can be quite influential, so it needs to be carefully chosen.

• Restrictions so far:

– propriety of πR
i for a = .5, b = 1 requires ρi ≥ (1 + n)−1

– model selection consistency requires limn→∞ ρi(1 + n) = ∞
– existence of intrinsic prior ; ρi should not depend on n

• Note: For existence of the robust prior and marginal likelihoods:

n ≥ 1/(k0 + k1)

• Choose ρi so that previous conditions are satisfied for all such n:

– ρi must be a constant (independent of n)

– ρi ≥ 1/(1 + k0 + ki)

• Desiderata met by all such ρi, further arguments required
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Argument 1: more on predictive matching

• since Bi0 = 1 for a sample of size n = ki + k0 it seems

reasonable to require that a single extra observation would not

be able to strongly discriminate between the models

• To quantify intuition, we look for BF’s that are close to 1 for

data being as supportive as possible of M0 and sample size

n = k0 + ki + 1 (also Ghost & Samantha 02, Spiegelhalter & Smith 82)

• This is achieved by choosing ρi to be as small as is reasonable.

The choice ρi = 1/(k0 + ki + 1) is the minimum value of ρi and

is a candidate, and so is ρi = 1/(k0 + ki)
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Argument 2: more on the intrinsic prior

• With previous choices, the intrinsic prior can be written as

πi(β0,βi, σ) = σ−1 ×
∫ ∞

0

Nki(βi | 0, g̃ ρi Ξ−1) pi(g̃) dg̃ ,

where g̃ = g∗/ρi and pi(g̃) = (1/2)(g̃)−3/21{g̃>1}

• in the intrinsic prior approximation to the robust prior, ρi can be

interpreted as simply a scale factor to the conditional covariance

matrix

• previous suggestions related to ‘unit information priors’ scenarios

of this type suggests the overall choice ρi = 1/(k0 + ki) which is

obviously very close to earlier suggested 1/(k0 + ki + 1).
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VI. Extensions of Conventional Bayes

Factors
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Extending Conventional Bayes factors

JZS proposals directly apply to

– X = (X1, Xe) is full rank

– reduced model defined by βe = 0

– βe does not need to be orthogonal to (β1, σ).

Extension to

– X = (X1, Xe) not necessarily of full rank

– reduced model defined by CTβ = 0

is conceptually very simple ; reparameterize to problems with

known solutions

X full (non full) rank ; regression (anova) models
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Regression models

• X : n× k full rank

• to choose between

M1 : f1(y | β, σ) = {Nn(y | Xβ, σ2In) : C tβ = 0}

M2 : f2(y | β, σ) = Nn(y | Xβ, σ2In)

• Alternatively, to test:

H1 : C
tβ = 0, vs H2 : C

tβ ̸= 0.

(w.l.o.g. C : k × ke, ke ≤ k can be assumed full rank )
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reparameterizing to JZS situation

• Let A : k × (k − ke) be any matrix so that Rt = (A, C) non

singular (and w.l.g. |detR| = 1)

• partition R−1 : k × k as R−1 = (S, T )

(S : k × (k − ke) and T : k × ke; k1 = k − ke )

• define Xe = XT , X1 = XS

(X1 : n× k1 and Xe : n× ke; k1 = k − ke )

• reparameterization:

for M1: (β1, σ) = g1(β, σ) = (Atβ, σ)

for M2: (β1,βe, σ) = g2(β, σ) = (Atβ,Ctβ, σ)
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• In the original formulation there is no “βe” nor “β1”, as in the

covariable selection problem. Nevertheless, in the proposed

reparameterization, Ctβ of dimension ke, plays the role of βe

(the parameter of interest) and Atβ of dimension k − ke plays

the role of β1 (the nuisance or common parameter).

• Previous model selection problem equivalent to:

M∗
1 : f ∗

1 (y | β1, σ) = Nn(y | X1β1, σ
2In)

M∗
2 : f ∗

2 (y | β1,βe, σ) = Nn(y | X1β1 +Xeβe, σ
2In).

Interestingly, the conventional Bayes factor can be shown not to

depend on the arbitrary A
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ANOVA models

• X̃ : n× k is of rank r, with r < k

• to choose between

M1 : f1(y | β̃, σ) = {Nn(y | X̃β̃, σ2In) : C̃
t
β̃ = 0}

M2 : f2(y | β̃, σ) = Nn(y | X̃β̃, σ2In),

• Alternatively, to test:

H1 : C̃
t
β̃ = 0 vs H2 : C̃

t
β̃ ̸= 0

(w.l.o.g. C̃
t
: ke × k, ke ≤ k can be assumed of rank ke )

The problem here is overparameterized, but often full rank

parameterization exists:
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reparameterizing to full rank

Result: if hypothesis C̃tβ̃ = 0 is testable ; a (non unique) full

rank parameterization exists and the conventional Bayes factor is

independent of the reparameterization

C̃
t
β̃ = 0 is a testable hypothesis if C̃

t
GX̃

t
X̃ = C̃

t
, where G is a

generalized inverse of X̃
t
X̃

(Rencher, 2000; Ravishanker and Dey, 2002))

C̃
t
β̃ = 0 is testable ↔ ∃ Xn×r, Er×k, Cr×ke , s.t.:

(i) X and E of full rank r,

(ii) XE = X̃, and

(iii) CtE = C̃
t
.
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For a testable null ; alternative full rank formulation

M∗
1 : f ∗

1 (y | β, σ) = {Nn(y | Xβ, σ2In) : C
tβ = 0},

M∗
2 : f ∗

2 (y | β, σ) = Nn(y | Xβ, σ2In).

Note that M∗
1 and M∗

2 are full rank models.

Although from the straight derivation B21 seems to depend on

(arbitrary) choice of X,C,E, the conventional Bayes factor can

be shown to be independent of the reparameterization
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Conventional Bayes factors

For all previous situations, CBF can be expressed as

B21 =

∫ (
1 + t n

SSEf

SSEr

)−(n−r+ke)/2

(1 + t n)(n−r)/2 IGa(t | 1
2
,
1

2
) dt

SSEf and SSEr are residual sums of squares for the original full

(M2) and restricted (M1) models

If only BF are required, no need to explicitly reparameterize

Conventional BF easy to evaluate: numerically, by MC or by

efficient Laplace approximation
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Conventional Prior Distributions

• Goal ; explicitly derive priors producing previous conventional

Bayes factors

• motivation ; judge adequacy of derived Bayes factors studying

the corresponding priors (not always done in objective model

selection)

• general procedure is simple: we know the conventional prior

π∗
i (νi) for the convenient reparameterization f ∗

i (y | νi) of the

original problem fi(y | θi), with νi = gi(θi), for i = 1, 2 ;

derive πi(θi) from π∗
i (νi)
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• if gi is 1-1 ; usual transformation rule:

πi(θi) = π∗
i (gi(θi)) |detJi(θi)|,

where Ji is jacobian matrix of transformation gi

• Not always the case, i.e. when dim(νi) < dim(θi) (anova) ;

derive πi such that the predictive distributions in both the

original and reparameterized models are equal, that is:

πi(θi) :

∫
f∗
i (y | νi)π

∗
i (νi)dνi =

∫
fi(y | θi)πi(θi)dθi

also ; B12 not affected by reparameterization.

Note: πi(θi) does not have to be unique.
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• Interestingly ; conventional prior distributions (CPD) closely related

to the Partially Informative Normal (PIN) Distributions (Ibrahim and

Laud, 94; Sun, Tsutakawa and Speckman 99; Speckman and Sun

(SS) 03)

• It is possible to generalize PIN’s and use scale mixtures of resulting

GPIN’s to provide a unified, convenient way to derive CPD’s (Bayarri

and Garćıa-Donato, 2004).

• the term “Partially Informative” nicely reflects essence of CPD’s,

which typically have, in the convenient reparameterization, improper

distributions for the ‘common’ parameters, and proper (conditional)

distributions for the parameters not occurring in the restricted model.

• Note: for nulls of the form Ctβ = 0, ‘common parameters’ might

not be obviously recognized in the original parameterization

• We do not pursue the PIN connection here
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Regression models
Recall that the (full rank) selection model problem:

M1 : Y ∼ {Nn(y | Xβ, σ2In) : Ctβ = 0}

M2 : Y ∼ Nn(y | Xβ, σ2In),

can be reparameterized as:

M∗
1 : Y ∼ Nn(y | X1β1, σ

2In)

M∗
2 : Y ∼ Nn(y | X1β1 +Xeβe, σ

2In)

with A arbitrary (Rt = (A,C) non singular) and

. for M1: (β1, σ) = g1(β, σ) = (Atβ, σ)

. for M2: (β1,βe, σ) = g2(β, σ) = (Atβ,Ctβ, σ)
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Conventional Prior Distributions

The CPD’s in the original parameterization are:

π1(β, σ) = σ−1 1ke(C
tβ = 0),

π2(β, σ) = σ−1Cake(C
tβ | 0,

(V tV

nσ2

)−1
)

where

V = (In − P 1)Xe, X1 = XS, Xe = XT ,

(S , T ) the inverse of (A , C)

Here, Ctβ (dimension ke), plays the role of βe (parameter of

interest); Atβ (dimension k1 = k− ke) the role of β1 (the nuisance or

common parameter).

the CPD’s distributions depend on the arbitrary matrix A. However,

the Conventional Bayes Factor does not, as shown previously
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anova models

Let X̃ : n× k of rank r < k and C̃
t
β̃ = 0 testable. Then the model

selection problem:

M1 : Y ∼ {Nn(y | X̃β̃, σ2In) : C̃
t
β̃ = 0}

M2 : Y ∼ Nn(y | X̃β̃, σ2In)

can be reparameterized as the full rank problem :

M∗
1 : Y ∼ {Nn(y | Xβ, σ2In) : C

tβ = 0}

M∗
2 : Y ∼ Nn(y | Xβ, σ2In),
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where

X : n× r, E : r × k full rank,

(β, σ) = g(β̃, σ) = (Eβ̃, σ)

E is arbitrary ( XE = X̃, and CtE = C̃
t
)

With previous matrices X,E and C,

– take A s.t. Rt = (A , C) non singular and R−1 = (S , T ).

Let Xe = XT , X1 = XS

– let Q2 : k × (k − r) be any matrix such that Q = (Et , Q2) is

non singular.
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Conventional Prior Distributions

Alternatively, we can write:

π1(β̃, σ) = σ−1 1ke(C̃
t
β̃ = 0) h1

k−r(Q
t
2 β̃)

π2(β̃, σ) = σ−1 h2
k−r(Q

t
2β̃)Cake(C̃

t
β̃ | 0,

(V tV

nσ2

)−1
)

Now C̃
t
β̃ (dimension ke), is the ‘parameter of interest’ while Qt

2β̃

(dimension k − r) is that part of the nuisance parameters which

overparameterizes the problem (in the proposed parameterization,

the likelihood does not depend on Qt
2β̃).

hi
m is an arbitrary (proper) density in Rm, i = 1, 2
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Change point problem

For βi of dimension k, and X i of full rank, let

Y a = Xaβa + ϵa, ϵa ∼ Nna(0, σ
2Ina),

Y b = Xbβb + ϵb, ϵb ∼ Nnb
(0, σ2Inb

),

The change-point problem is the testing:

H1 : βa = βb vs H2 : βa ̸= βb.

Frequentist solutions usually based on the F statistic (Chow’s Test).

Moreno, Torres and Casella (2002) derived intrinsic priors

(heteroscedaticity)
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The change point problem can be expressed as the following model

selection problem:

M1 : Y ∼ {Nn(y | Xβ, σ2In) : C
tβ = 0}

M2 : Y ∼ Nn(y | Xβ, σ2In),

where

yt = (yt
a,y

t
b), X = Xa ⊕Xb : n× 2k (full rank)

βt = (βt
a,β

t
b)), Ct = (Ik, −Ik) : k × 2k.
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Conventional Bayes factor

given by the usual one-dimensional integral:

B21 =

∫ (
1 + n t

SSEf

SSEr

)−(n−k)/2

(1 + n t)(n−2k)/2 IGa(t | 1
2
,
1

2
) dt,

where SSEf = yt(In −X(XtX)−1Xt)y and

SSEr = SSEf + ytX(XtX)−1C(Ct(XtX)−1C)−1Ct(XtX)−1Xty.

Conventional prior

CPD’s are: π1(βa,βb, σ) = σ−11k(βa = βb),

π2(βa,βb, σ) =

K σ−1
[
1 + (βa − βb)

t ((X
t
aXa)

−1 + (Xt
bXb)

−1))−1

nσ2
(βa − βb)

]−(1+k)/2

,

where the K is a Cauchy-type constant
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These priors are nice and intuitive for MS:

• variances (‘common’ parameters) have same invariant

non-informative prior under both models

• One of the regression coefficients, say βa, can be argued to be

‘common’ to both models ; CPD’s are uniform under both

models

• Conditional distribution of βb given (βa, σ) varies:

– under the null model (no change point) ; degenerate on

βa = βb

– under the full model ; a Cauchy centered at βa and with

scale nσ2((X t
aXa)

−1 + (X t
bXb)

−1)
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• also, prior π2 depends on the β’s and the design matrices only

through a quantity of the same functional form as the usual

F-statistic:

F = (β̂a − β̂b)
t ((Xt

aXa)
−1 + (Xt

bXb)
−1)−1

kσ̂2
2

(β̂a − β̂b),

104



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

VII - Divergence-based priors
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General definition

For the problem

M0 : f0(y | α), M1 : f1(y | α,β),

Bayarri and Garćıa-Donato (2008) proposed the Divergence-Based

(DB) priors (a generalization of Jeffreys ideas):

πD
1 (β | α) ∝ gq

(
D(β,β0,α)

)
πN
1 (β | α), where

• D is some ‘distance’ between f1 and f0,

• gq is a real value decreasing function indexed by a parameter

q > 0, and

• πN
1 (β | α) is an objective estimation prior (possibly improper).
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DB priors: recommended choices

This definition defines a vast family of prior distributions (depending

on D, hq and πN
1 )

Our specific recommendations:

• D = symmetrized Kullback-Leibler divergence divided by n

• gq(x) = (1 + x)−q (has polynomial tails),

• πN
1 the reference prior of Berger and Bernardo (1992),

• (partly our intuition)

q =
1

2
+ inf{q > 0 : πD

1 () is proper}.
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DB priors, the examples and the criteria

• For number of examples (included the previously shown), DB

priors lead to proposals that meet the Desiderata

• no general results yet (work in progress), but partial results very

promising
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