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Outline

• Overview and an illustration

• Fractional Bayes factors

• Intrinsic Bayes factors and intrinsic priors

• Expected posterior priors
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I. Overview and an Illustration

• Use of imaginary data to construct priors

• Use of actual data to construct priors

(Good, 1950, Smith and Spiegelhalter, 1980, de Voss, 1993, Gelfand and

Dey, 1994, O’Hagan, 1995, 1997, Varshavsky, 1995, Berger and Pericchi,

1996,. . ., 2002, De Santis and Spezzaferri, 1996,1997, Dmochowski, 1996,

Sansó, Pericchi and Moreno, 1996, Bertolino and Racugno, 1997, Iwaki,

1997, Gelfand and Ghosh, 1998, Lingham and Sivaganesan, 1997, 1999,

Moreno, Bertolino and Racugno, 1998, 1999, Perez, 1998, Ghosh and

Samanta, 1999, Key, Pericchi and Smith, 1999, Nadal, 1999, Schluter,

Deely and Nicholson, 1999, Rodriguez and Pericchi, 2000, Beattie, Fong,

and Lin, 2001, Berger and Perez, 2002, Neal, 2002, Casella and Moreno,

. . . )
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Use of imaginary data to construct priors

Two Approaches:

• In constructing intrinsic and expected posterior priors

(discussed later).

• In choosing normalization constants for improper objective

priors (Spiegelhalter and Smith, 1982; Ghosh, 1997).

Recall: Improper objective priors πO
i and πO

j for parameters of

models Mi and Mj yield indeterminate Bayesian answers because

they can be multiplies by arbitrary constants ci and cj .

Proposed solution: Choose an imaginary training sample, y∗
0,

1. of minimal size, such that the marginal likelihoods

ml(y
∗
0) =

∫
fl(y

∗
0 | θl)π

O
l (θl)dθl <∞ , l = i, j ;

2. providing maximum possible support to the simpler model, Mi.
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The authors argued that, for such a training sample, the Bayes

factor of Mj to Mi should be equal to one. For ciπ
O
i and cjπ

O
j , this

means

1 = Bij =

∫
fi(y

∗
0 | θi)ciπ

O
i (θi)dθi∫

fj(y∗
0 | θj)cjπO

i (θj)dθj
,

so choose ci and cj so that

ci
cj

=
mj(y

∗
0)

mi(y∗
0)
,

and then use ciπ
O
i and cjπ

O
j as the priors for the full data.

Notes: The choice of y∗
0 depends on the models under comparison,

so there is no guarantee of coherency across models, i.e., that the

resulting Bayes factors satisfy

Bij ×Bjk = Bik .
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Use of actual data to construct priors or
procedures

• Through the likelihood function

– The absurd: choose the prior to be the posterior arising

from an improper objective prior

– The common but highly questionable: choose the prior to

‘span the range of the likelihood’

– The good: fractional Bayes factors (discussed later)

• Through training samples

– Intrinsic Bayes factors and intrinsic priors

– Expected posterior priors
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An Illustration of Use of Training Samples:
Intrinsic Median Posterior Probability
(Schluter, Deely and Nicholson, 1998, and Berger and Pericchi, 1998)

Data: X1, X2, . . . , Xn are N(θ, 1)

Models: M1 : θ = 0, M2 : θ ̸= 0

Standard objective prior:

Pr(M1) = Pr(M2) =
1
2 ; under M2, π2(θ) = 1.

Formal (illegitimate) Bayes factor:

BO
12 =

f(x | 0)∫
f(x | θ) (1)dθ

=
√
n e−

n
2 x̄2

.

Formal (illegitimate) posterior probability of M1:

Pr(M1 | x) =
(
1 +

1√
n
e

n
2 x̄2

)−1

.
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Obtaining a proper prior by use of a training sample:

Choose one observation, say xi, and compute

π2(θ | xi) =
1√
2π
e−

1
2 (θ−xi)

2

(proper).

Use this prior on the remaining data,

x(i) ≡ (x1, . . . , xi−1, xi+1, . . . , xn), to compute the Bayes factor

BO
12(xi) =

f(x(i) | 0)∫
f(x(i) | θ)π2(θ | xi)dθ

=
√
n e−

n
2 x̄2

e
1
2x

2
i ,

and the posterior model probabilities

Pr(M1 | x(i);xi) = 1− Pr(M2 | x(i);xi) =

[
1 +

1√
n
e

n
2 x̄2

e−
1
2x

2
i

]−1

.
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The median intrinsic posterior probability:

• Find Pr(M1 | x(i);xi) for all training samples {xi, i = 1, . . . , n};

• Use the median of Pr(M1 | x(i);xi) (and Pr(M2 | x(i);xi)) over

all training samples,

Pmed
1 = 1− Pmed

2 =

[
1 +

1√
n
e

n
2 x̄2

e−
1
2med{x2

i }
]−1

,

as the recommended conventional posterior probabilities of M1

and M2.
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General Algorithm:

• Begin with standard objective priors, πO
i , for the parameters θi

in the model Mi (π
O
i (θi) = 1 is okay).

• Define a “minimal training sample,” x∗ = (x∗1, . . . , x
∗
l ), as any

subset of the data which is as small as possible such that the

posterior distributions, πO
i (θi | x∗), are all proper, i.e.,

mO
i (x

∗) =
∫
fi(x

∗ | θi)πO
i (θi)dθi <∞. (Usually, l = #

parameters in largest model.)

• Compute the Bayes factor of each model to a ‘base’ model M0

(often the simplest or most complex), using the remaining data

x∗ (through the conditional likelihood fi(x∗ | θi,x∗)) with the

πO
i (θi | x∗) as priors.

• Do this for every possible minimal training sample, x∗, (or a

large subset) and take the median of the results.
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Formula:

Bmed
i0 = intrinsic median Bayes factor of Mi to M0

=
Median

(all x∗)

{
mO

i (x) m
O
0 (x

∗)

mO
i (x

∗) mO
0 (x)

}
,

where mO
i (x) =

∫
fi(x | θi)πO

i (θi)dθi. Then

Pmed
i = ‘intrinsic median’ posterior probability ofMi

=
Bmed

i0∑
j B

med
j0

(or
Pr(Mi) B

med
i0∑

j Pr(Mj) Bmed
j0

) .

Note: When the number of possible training samples is large, one

need only sample from them and take the median posterior

probability over those sampled. Indeed, if n is the sample size of the

data, it usually suffices to draw just ln (sets) of training samples.
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Example: Hald regression data

Possible regressors: X1, X2, X3, X4

Full Model: is

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ϵ, ϵ ∼ N(0, σ2)

Models under consideration: Subsets of regressors.

Notation: Model {1,3,4} means

Y = β0 + β1X1 + β3X3 + β4X4 + ϵ

Initial objective priors: πi(β, σ) = 1/σ

Minimal training samples: y∗ consists of any subset of six distinct

observations (since there are a maximum of six unknown

parameters, including σ2) and their covariates
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Formula for mO
i :

mO
i (y) =

πki/2Γ((n− ki)/2)√
det(Xt

(i)X(i))R
(n−ki)/2
i

,

where, for model Mi, ki is the number of regressors plus one, X(i)

is the design matrix, and Ri is the residual sum of squares.
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Answers:

model posterior probability

{1,2,3,4} 0.049

{1,2,3} 0.171

{1,2,4} 0.190

{1,3,4} 0.160

{2,3,4} 0.041

{1,2} 0.276

{1,4} 0.108

{3,4} 0.004

others < 0.0003
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II. Fractional Bayes factors (O’Hagan 1995, 1997)

15
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Idea: Instead of using a fraction of the data as a training sample,

use a fraction of the likelihood

Algorithm:

• Choose some “fraction” 0 < b < 1; a reasonable choice is

b = pmax/n, where n is the sample size and pmax is the

dimension of the largest model.

• For model Mj , choose the prior

π∗
j (θj) ∝ [fj(x | θj)]

b · πO
j (θj)

• Compute Bayes factors using these priors and the “remaining

likelihoods ” fj(x | θj)
(1−b), yielding

16
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BFBF
ji =

∫
[fj(x | θj)]

(1−b) π∗
j (θj)dθj∫

[fi(x | θi)]
(1−b) π∗

i (θi)dθi

= BO
ji ·

∫
[fi(x | θi)]

b πO
i (θi)dθi∫

[fj(x | θj)]
b πO

j (θj)dθj

• Computationally often comparatively simple.

• Broadly applicable, except it doesn’t work in irregular

problems, especially problems where the sample space depends

on the parameter (e.g., X ∼ U(0, θ)).

• Specification of different fractions, b, for different parts of the

likelihood can be necessary.
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III. Intrinsic Bayes Factors and Intrinsic
Priors

18
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The intrinsic Bayes Factor Approach
(Berger and Pericchi, others, ...)

Data: x = (x1, . . . , xn)

Models: M1, . . . ,Mq with densities fi(x | θi), i = 1, . . . , q

Objective priors: (usually improper) πO
i (θi), i = 1, . . . , q

Posterior distribution for θi: π(θi | x)

Marginal likelihoods for Mi: m
O
i (x) =

∫
fi(x | θi)π

O
i (θi) dθi.

Definition 1 A training sample, x(l), is called proper if

0 < mN
i (x(l)) <∞ for all Mi, and minimal if it is proper and no

subset is proper.

Basic idea: For a minimal training sample x(l), use the (proper)

posteriors π(θi | x(l)) as priors, to compute Bayes factors for the

rest of the data, denoted by x(−l).
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The resulting Bayes factors:

Bji(l) =

∫
fj (x(−l) | θj ,x(l)) πO

j (θj | x(l))dθj∫
fi(x(−l) | θi ,x(l)) πO

j (θi | x(l))dθi
= BO

ji (x) ·BO
ij (x(l)),

where

BO
ji = BO

ji(x) =
mO

j (x)

mO
i (x)

and BO
ij (l) = BO

ij (x(l)) =
mO

i (x(l))

mO
j (x(l))

.

Now ‘average over all possible training samples. Possible averages:

Arithmetic IBF (AIBF):

BAI
ji = BO

ji(x) · 1
L

∑L
l=1B

O
ij(x(l)),

Median IBF (MIBF):

BMI
ji = BO

ji(x) ·Median
{
BO

ij(x(l))
}

Geometric IBF (GIBF):

BGI
ji = BO

ji(x) ·
[∏L

l=1B
O
ij(x(l))

]1/L
20
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Notes:

1. Averages can be based on a random subset of all minimal

training samples; indeed n× pmax minimal training samples,

where n is the sample size and pmax is the dimension of the

largest model, typically suffices.

2. Computation of the mO
j (x(l)) can be challenging, because

Laplace approximations do not work. Hence IBF’s are most

used when the mO
j (x(l)) are closed form.

3. With large model spaces and large n, even closed form

marginals leave a challenging computation.
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Example: Normal Mean

M1 : x ∼ N(x | 0, σ2
1) M2 : x ∼ N(x | µ, σ2

1)

Objective priors: πO
1 (σ1) = 1/σ1 and πO

2 (µ, σ2) = 1/σ2
2 .

(Note that πO
2 is not the usual prior, but gives simpler expressions.)

Minimal training samples: x(l) = (xi, xj) (distinct)

Then

mO
1 (x(l)) =

1

2π(x2i + x2j )
, mO

2 (x(l)) =
1√

π(xi − xj)2
·

The formal Bayes factor for full data x, when using πO
1 and πO

2

directly:

BO
21 =

√
2π

n
·
(
1 +

nx2

s2

)n/2

,
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where s2 =
∑n

i=1(xi − x)2. Thus the AIBF is

BAI
21 = BO

21 ·
1

L

L∑
l=1

(x1(l)− x2(l))
2

2
√
π[x21(l) + x22(l)]

.
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Intrinsic priors (for AIBF’s)

Key Question: Does the AIBF correspond (for large sample sizes)

to an actual Bayes factor; if so, the priors associated with the

actual Bayes factor are called the intrinsic priors for the AIBF.

Finding intrinsic priors: Suppose

(i) Under Mj , θ̂j → θj , θ̂i → ψi(θj),
∑L

l=1B
O
ij (x(l)) → B∗

j (θj)

(ii) Under Mi, θ̂i → θi, θ̂j → ψj(θi),
∑L

l=1B
O
ij(x(l)) → B∗

i (θi)

When dealing with the AIBF, it will typically be the case that, for

k = i or k = j,

B∗
k(θk) = lim

L→∞
EMk

θk

[
1

L

L∑
l=1

BN
ij (l)

]
;

if the X(l) are exchangeable, then the limits and averages over L

can be removed.
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Then it can be shown that the intrinsic prior (πI
j , π

I
i ) is given by

the solutions to the equations

πI
j (θj)π

N
i (ψi(θj))

πN
j (θj)πI

i (ψi(θj))
= B∗

j (θj),

πI
j (ψj(θi))π

N
i (θi)

πN
j (ψj(θi))πI

i (θi)
= B∗

i (θi). (1)

Normal Example: Computation and solution of the equations yields

πI
1(σ1) =

1

σ1

πI
2(µ, σ2) =

1

σ2
× 1− exp[−µ2/σ2

2 ]

2
√
π(µ2/σ2)

.

This last conditional distribution is proper (integrating to one over

µ) and, furthermore, is very close to the Cauchy(0, σ2) choice of

π2(µ|σ2) suggested by Jeffreys (1961).
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George Casella, 1951-2012

• Forefront of development

of Intrinsic priors

– application to many

scenarios

– first proofs of consis-

tency

– robust IP bounds

• p-values and Bayes

• Conditional frequentist

theory

• Many computational in-

novations
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No Need to Spend α in Interim Analysis:

Data: di is the observed treatment difference for subject i treated

with two hypotensive agents (Robertson and Armitage, 1959;

Armitage, 1975). (Here ti [si] denotes the t-statistic [sample

standard deviation] after observation i.)

Model: The di are i.i.d Normal(θ, σ2), i = 1, . . ..

To Test: H1 : θ = 0 versus H2 : θ < 0 versus H3 : θ > 0.

Frequentist analysis:

• Choose a stopping rule and decision rule; e.g., if doing a

two-sided test, the Siegmund (1977) sequential t-test

stops the experiment when |ti| > c(i) and rejects H1 .

• Controls the associated Type I error probability.

27
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Objective Bayesian analysis: Pr(Hj) = 1/3; noninformative

prior for (θ, σ2) appropriately ‘trained’ ( ‘Encompassing Intrinsic

Bayes Factors’: Berger & Mortera, 1999 JASA).

Objective Posterior Probabilities Prj(i) of Hj at observation i:

Pr1(i) =

[
1 +

s1(i)

τi−1(ti)

(
1− Ti−1(ti)

s2
+

Ti−1(ti)

s3(i)

)]−1

,

Pr2(i) =

[
1 +

s2
1− Ti−1(ti)

(
τi−1(ti)

s1(i)
+

Ti−1(ti)

s3(i)

)]−1

,

and Pr3(i) = 1− Pr1(i)− Pr2(i), where τi−1 and Ti−1 are the

density and c.d.f. of the standard t-distribution with (i− 1) degrees

of freedom, s3(i) = πi(i− 1)− s2,

s1(i) =
si√
i

∑
k ̸=l

|dk − dl|
dk

2 + dl
2 + ϵ

, s2 =
∑
k ̸=l

(
π

2
− arctan(

−(dk + dl)

|dk − dl + ϵ| )
)
.

(ϵ ≈ 0 is introduced to avoid numerical indeterminacy)
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Pair Difference t-statistic Posterior Probabilities

n di t Pr1 Pr2 Pr3
1 95 - - - -

2 -20 0.652 0.333 0.333 0.333

3 41 1.16 0.357 0.237 0.407

4 -10 1.00 0.431 0.157 0.412

5 1 1.01 0.360 0.148 0.492

6 12 1.15 0.342 0.142 0.516

7 11 1.26 0.348 0.132 0.519

8 -2 1.23 0.276 0.136 0.589

9 6 1.30 0.283 0.130 0.587

10 14 1.44 0.295 0.115 0.590

11 19 1.63 0.291 0.095 0.615

12 71 2.05 0.203 0.058 0.739

13 -9 1.92 0.229 0.058 0.713

14 7 1.97 0.225 0.054 0.721

15 -19 1.74 0.294 0.061 0.646

20 -9 1.51 0.387 0.056 0.557

25 0 1.35 0.465 0.060 0.475

30 -3 0.831 0.620 0.079 0.301

35 0 0.339 0.669 0.112 0.219

40 0 0.056 0.698 0.134 0.168

45 -13 0.099 0.714 0.125 0.162

50 -3 -0.202 0.736 0.141 0.123

53 -37 -0.396 0.740 0.157 0.103
29
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Comments

(i) Neither multiple hypotheses nor the sequential aspect caused

difficulties. There is no penalty (e.g., ‘spending α’) for looks at

the data.

(ii) Quantification of the support for H1 : θ = 0 is direct. At the

12th observation, t = 2.05 but Pr1 = 0.203. At the end,

Pr1 = 0.740.

(iii) At the 12th observation, Pr2 = 0.058, so H2 can be effectively

ruled out.

(iv) For testing H1 : θ = 0 versus H2 : θ ̸= 0, the Pri are conditional

frequentist error probabilities.
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IV. Expected posterior priors
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Expected Posterior Priors (Perez, 1998, Perez and Berger, 2001,

2002, Neal, 2002)

Initial priors: πO
i (θi), typically improper

Initial marginals: mO
i (y) =

∫
fi(y | θi)π

O
i (θi)dθi

Training sample posteriors: Consider a training sample, y∗,

such that the posterior distributions

πO
i (θi | y∗) =

fi(y
∗ | θi)π

O
i (θi)

mO
i (y

∗)

exist, for i = 1, . . . , k.
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Definition: The prior densities

π∗
i (θi) =

∫
πO
i (θi | y∗

(i))m
∗(y∗)dy∗,

where y∗
(i) is a minimal random subsample of y∗ such that the

πO
i (θi | y∗

(i)) exist, will be called the expected posterior priors (or

EP priors) for the θi, with respect to m∗.

Note: The EP priors, π∗
i (θi), will not be proper unless m∗ itself is

proper, but are always properly ‘calibrated’ across models.

Choices of m∗ :

• A subjectively elicited marginal distribution

• If M0 is a model nested in all others, set m∗(y∗) = mO
0 (y

∗).

– Then the EP prior is identical to the ‘intrinsic prior.’

• The empirical distribution

33
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Choosing m∗ to be the empirical distribution: Given

observations y1, . . . ,yn, let

m∗(y∗) =
1

L

∑
l

I{y(l)}(y
∗),

where y(l) = (yl1 , . . . , ylm) is a subsample of size 0 < m < n such

that πO
i (θi | y(l)) exists for all models Mi, and L is the number of

such subsamples of size m.

Computation: Introduce y∗ as latent variables, effectively

replacing π∗
i (θi) =

∫
πO
i (θi | y∗

(i)) m
∗(y∗)dy∗ by

πO
i (θi | y∗

(i))m
∗(y∗) =

πO
i (θi)fi(y

∗
(i) | θi)

mO
i (y

∗
(i))

m∗(y∗) .

34



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

A default prior for testing a point null

This uses the intrinsic or expected posterior prior construction. For

i.i.d. observations x = (x1, . . . , xn) from a density f(x | θ), and for

testing H0 : θ = θ0 versus H1 : θ ̸= θ0,

• let πO(θ) be a good estimation objective prior, so that

πO(θ | x) = f(x | θ)πO(θ)/mO(x) is the resulting posterior,

and mO(x) =
∫
f(x | θ)πO(θ) dθ;

• then the intrinsic prior (which will be proper) is

πI(θ) =

∫
πO(θ | x∗)f(x∗ | θ0) dx∗ ,

with x∗ = (x∗1, . . . , x
∗
q) being (unobserved) data of the minimal

sample size q such that mO(x∗) <∞.
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• The resulting Bayes factor is

B01(x) =
f(x | θ0)∫

f(x | θ)πI(θ)dθ
=

f(x | θ0)∫
mO(x | x∗)f(x∗ | θ0)dx∗ .

Example: Test H0 : θ = 0 versus H0 : θ > 0, based on

Xi ∼ f(xi | θ) = (θ + b) exp{−(θ + b)xi}, where b is known;

• Suppose we choose πO(θ) = 1/(θ + b) (the more natural square

root is harder to work with).

• A minimal sample size for the resulting posterior to be proper

is q = 1.

• Computation then yields

πI(θ) =
∫
πO(θ | x∗1)f(x∗1 | 0)dx∗1 = b/(θ + b)2.
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Application: In the search for the Higgs boson, we observe

N = Poisson(s+ b), where s is the count rate from ‘signal’ events

and b is the known ‘background’ count rate.

To Test: H0 : s = 0 versus H1 : s > 0.

Intrinsic prior: To obtain a minimal sample corresponding to a

single Poisson observation, Berger and Pericchi (2004 AOS) suggest

using a single observation from the equivalent exponential

inter-arrival time process, here X∗ ∼ (θ + b)e−x∗(θ+b). Then

πI(θ) =
∫
πO(θ | x∗)f(x∗ | 0)dx∗ = b/(θ + b)2.

Bayes factor of H0 to H1:

B01 =
bO e−b∫∞

0
(s+ b)O e−(s+b)πI(s) ds

=
b(n−1) e−b

Γ(n− 1, b)
,

where Γ is the incomplete gamma function.
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Application to mixture models with an unknown number
of bivariate normal components

The model is given by

p(k,w, z,θ,y) = p(k)p(w | k)p(z | w, k)p(θ | k)f(y | θ, z) ,

• k represents the unknown number of components;

• w = (w1, . . . , wk), where wj is the probability of an observation

coming from component i;

• z = (z1, . . . , zn), where zi indicates that observation yi comes from

component zi;

• θ = (θ1, . . . , θk), with θi the parameter for component i.
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The distributions are given by

• p(k) is the prior probability of k components (default is uniform

over some range).

• p(w | k) is a Dirichlet distribution with known parameter

α = (α0, . . . , α0) (default is α0 = 1/2).

• zi are i.i.d. with p(zi = j | w, k) = wj .

• The likelihood is f(y | θ,z) =
∏O

1 f(yi | θzi).

• The initial (non-trained) prior for the parameters is

p(θ | k) =
∏k

1 π
O(θj), with improper priors πO(·).

To avoid problems with identifying the components, we order the first

coordinate of the means in the application.
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Based on minimal training samples Y ∗ for a single component, the

expected posterior priors are given by

π∗(θ | k) =
∫ k∏

1

πO(θj | y∗)m∗(y∗)dy∗

The Reversible Jump MCMC method described in Richardson and

Green 96 can be used for this model with the following modifications for

generating from the posterior of each θj :

• Define u∗(y∗ | y,z, . . .) ∝ m∗(y∗)
∏k

1 m
O(yj ,y

∗)/mO(y∗). Here

mO(·) is the marginal for f(· | θ)πO(θ).
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• Generate a new y∗
(new) using a Metropolis-Hastings algorithm. For

generating from the transition probabilities we use

1. Generate θ1, . . . , θk from
∏k

1 π
O(θj | yj ,y

∗
(t)).

2. Generate y∗
(t+1) from

∑k
1 wjf(· | θj).

• Generate θ1, . . . , θk from
∏k

1 π
O(θj | yj ,y

∗
(new)).

With this approach, m∗(·) in fact acts as a hierarchical common

improper prior for all components. A nice property of this approach is

that we do not need to restrict the number of observations per

component, as for example in Diebolt and Robert 94. Hence the

allocations z are independent a posteriori, making the inference much

easier.
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BATSE gamma ray burst data set: We analyze 745

measurements taken by the Compton Gamma Ray Observatory

between 1991 and 1994 (third catalogue). Of interest is the

relationship of the duration (T90) and hardness ratio (HR) of the

bursts. Thus it is bivariate data

xi = (xi1, xi2) = (log(T90)i, log(HR)i)

with standard errors σi = (σi1, σi2) = (σT90i , σHRi).

The true gamma ray burst values, yi = (yi1, yi2), are assumed to

arise from a mixture of k bivariate normal distributions, so we have

xi ∼ N(xi | yi,σi) and yi ∼
k∑

j=1

wjN(yi | µj ,Σj).

Standard initial objective priors were used to develop the expected

posterior priors.
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MCMC:

• An additional step was added to generate yi from

p(yi | · · · ) ∝ N(xi | yi,σi)×N(yi | µzi ,Σzi).

• 100,000 iterations, with convergence judged informally.

Results:

• P (k = 2 | y) = .99.

• Table 1 gives the corresponding estimates of the location and

covariance matrices for two components.

• Figure 1 shows the allocation distribution for the gamma ray

bursts, along with predictive confidence sets of levels 90%, 95%

and 99% for the two components.
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Base model EP priors Empirical EP priors

Component 1

ŵ1 = 0.24

µ̂T90= -0.85 µ̂HR= 1.61

σ̂T90= 1.04 σ̂HR= 0.50

ρ̂ =-0.03

Component 2

ŵ2 = 0.76

µ̂T90 = 3.31 µ̂HR = 0.95

σ̂T90 =1.10 σ̂HR = 0.49

ρ̂ =0.01

Group 1

ŵ1= 0.24

µ̂T90= -0.92 µ̂HR= 1.62

σ̂T90= 0.98 σ̂HR= 0.50

ρ̂=-0.02

Group 2

ŵ2= 0.76

µ̂T90= 3.31 µ̂HR = 0.95

σ̂T90=1.10 σ̂HR=0.49

ρ̂ = 0.01

Table 1: BATSE: Estimates for log(T90) and log(HR).
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Base model EP priors Empirical EP priors
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Figure 1: BATSE classification probabilities. Color bar indicates

value of p(zi = 2 | y).
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