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I. Laplace Approximation
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Goal: Analytically approximate the marginal density

m(x ) =

∫
f(x | θ )π(θ )dθ .

Preliminary ‘nice’ reparameterization: Choose a ‘good’

transformation to make the Laplace approximation as accurate as possible.

In particular, all parameters should lie in (−∞,∞).

• For variances, transform to ν = log σ2 as the parameter.

• For a probability p, transform to, e.g., ν = log p
1−p .

Definitions: Let L(θ ) = log f(x | θ ) denote the log-likelihood,

maximized at the mle θ̂ , and let Î denote the observed Fisher Information

matrix I(θ̂ ), where the Fisher Information matrix I (θ ) has (i, j) element

Iij(θ ) = −∂2L(θ )

∂θi ∂θj
.
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Expanding L(θ ) = log f(x | θ ) about its maximum θ̂ , yields a

L(θ ) ≈ L(θ̂ )− 1

2
(θ − θ̂ )tÎ (θ − θ̂ ) .

If π(θ ) is relatively flat near θ̂ , where L(θ ) is non negligibleb,

m(x ) =

∫
f(x | θ )π(θ )dθ

≈ π(θ̂ )

∫
f(x | θ )dθ

≈ π(θ̂ ) f(x | θ̂ )

∫
exp

{
−1

2
(θ − θ̂ )tÎ (θ − θ̂ )

}
dθ

= π(θ̂ ) f(x | θ̂ ) (2π)
p
2 |Î |−1/2 ,

where p is the dimension of θ .
awe assume that L has continuous second partial derivatives and that the first partial

derivative vanishes at θ̂
bThis will be true if L(θ ) is highly peaked in a small neighborhood around θ̂ , which

is typically de case for large n
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Improved approximation: Define Lπ(θ ) = log[f(x | θ )π(θ )], and let

θ̂ π and Î π be the maximium and Hessian for this function. Then

m(x ) ≈ π(θ̂ π) f(x | θ̂ π) (2π)
p
2 |Î π|−1/2 .

Comments:

The approximation is of order n−1/2 (under regularity conditions).

Kass and Raftery (95) ; samples of size less than 5p worrisome, larger

than 20p fine for ‘usual’ problems with ‘good’ parameterizations.

Use of Fisher information) itself, instead of Î , is worse.

If applied to both the numerator and denominator of a Bayes factor, the

approximation can be much better still (errors canceling).

6



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

Another approximation: For an objective estimation prior πO(θ ),

m(x ) =

∫
f(x | θ )π(θ )dθ

=

∫
f(x | θ )

π(θ )

πO(θ )
πO(θ )dθ

≈ π(θ̂ )

πO(θ̂ )

∫
f(x | θ )πO(θ )dθ

=
π(θ̂ )

πO(θ̂ )
mO(x ) .

This is useful when mO(x ) =
∫
f(x | θ )πO(θ )dθ is available in closed

form, as it applies with virtually no regularity conditions (Berger and

Pericchi, 1996).
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(First) Laplace approximation to Bayes factors: Apply Laplace

expansion to numerator and denominator of B21 to get the Laplace

approximation to B21:

BL
21 =

∫
f2(x | θ2)π2(θ2)dθ2∫
f1(x | θ1)π1(θ1)dθ1

≈ π2(θ̂2) f2(x|θ̂2) |Î2|−1/2 (2π)p2/2

π1(θ̂1) f1(x|θ̂1) |Î1|−1/2 (2π)p1/2
,

where θ̂1 and θ̂2 are the m.l.e.’s for θ 1 and θ 2 (which have dimensions p1

and p2) and Î1 and Î2 are observed information matrices.

Large n and i.i.d. data: Then Îi ≈ nI∗i , where I∗i is the expected Fisher

information for a single observation in Mi, and

BL
21 ≈ f2(x | θ̂2)

f1(x | θ̂1)
· n− 1

2 (p2−p1) · |I
∗
2|−1/2(2π)p2/2π2(θ̂2)

|I∗1|−1/2(2π)p1/2π1(θ̂1)
. (1)
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II. BIC and AIC
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BIC (Bayes Information Criterion)

The Schwarz (78) approximation to Bayes factors is based on simply

ignoring the last term in (1), because it is constant in n and so not as

important as the first two terms:

BBIC
21 ≈ f2(x | θ̂2)

f1(x | θ̂1)
· n− 1

2 (p2−p1) .

Raftery notes that, if one takes πi(θi) to be N(θi | θ̂i, I
∗(−1)
i ) (a unit

information prior centered at the mle), the third term in (1) is exactly 1.

Ref.: Schwarz (1978), Kass and Wasserman (1995), Dudley and Haughton (1997), Kass

and Vaidyanathan (1992), Pauler (1998).
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Typically, instead of using the Bayes factor directly, one uses the BIC

criterion

BICi = −2 log fi(x | θ̂i) + pi log n (≈ −2 logmi(x )) ,

so that

BIC2 −BIC1 = −2 logBBIC
21 .

For multiple models, one just chooses that model with minimal BICi.

The main justification that Schwarz gave for BIC is that it is consistent,

i.e. will select the correct model as n → ∞. (The constant terms that BIC

ignores are irrelevant asymptotically.)
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Akaike’s Information Criterion (AIC)

Criterion: AIC chooses the model Mi minimizing

AICi = −2 log f(x | θ̂ i) + 2 pi

here, the ‘penalty’ for dimension pi is 2 pi, so AIC has ‘penalty’ 2,

whereas BIC has ‘penalty’ log n ; AIC tends to choose larger models.

Bayes factor: AIC criterion corresponds to using

BAIC
21 ≈ f2(x|θ̂2)

f1(x|θ̂1)
· e−2 (p2−p1) ,

which cannot arise from any reasonable prior.
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AIC versus BIC. Roughly:

AIC can be better than BIC if

– Complexity of models grows with n (pi → ∞ as n → ∞)

– None of the models is correct and the goal is good prediction rather
than deciding which of the models is true.

BIC is usually better than AIC if

– There is a set of fixed models and n is large, since then AIC is not
even consistent.
Example Testing a normal mean

• X1, . . . , Xn
i.i.d.∼ N(θ, 1)

• To test M1 : θ = 0 vs M2 : θ ̸= 0 , z =
√
n x̄

• BAIC
21 = e ( 1

2 z
2−2)

• Note that, as n → ∞ under M1 : θ = 0 , z =
√
n x̄ ∼ N(0, 1)

• Thus BAIC
21 > 1 with positive probability as n → ∞, so that AIC

is not consistent under M1

– One of the models is (approximately) true.

– Simple models are desired for other reasons.
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III. Prior-Based BIC
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Prior-based BIC (PBIC)

(done with a SAMSI Social Sciences working group - Susie Bayarri, Woncheol

Jang, Luis Pericchi, Surajit Ray, and Ingmar Visser; the context was “getting the

model right, in structural equation modeling.”)

Data: Independent vectors xi ∼ gi(xi | θ), for i = 1, . . . , n.

Unknown: θ = (θ1, . . . , θp); θ̂ is the MLE

Log-likelihood function: l(θ) = log f(x | θ) = log (
∏n

i=1 gi(xi | θ))
where x = (x1, . . . ,xn).

Usual BIC: BIC ≡ −2l(θ̂) + p log n (Schwarz, 1978 AOS)

As n → ∞ (with p fixed) this is an approximation (up to a constant) to

twice the log of the Bayesian log likelihood for the model,

m(x) =
∫
f(x | θ)π(θ)dθ, so that

m(x) = cπe
−BIC/2(1 + o(1)) .
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Some of the problems with BIC

• Can the constant cπ from the prior be ignored?

• Problems with p.

– What is p with random effects or latent variables?

– What if p grows with n?

• Problems with n.

– Is n the number of vector observations or the number of real

observations?

– What if different θi have different effective sample sizes?

– What if observations vary significantly in information (as possible in

mixture contexts, models with mixed continuous and discrete

observations, ...)?
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Example - Group means: For i = 1, . . . , p and l = 1, . . . , r,

Xil = µi + ϵil, where ϵil ∼ N(0, σ2) .

• It might seem that n = pr but, if one followed Schwarz, one would have

(defining µ = (µ1, . . . , µp)
t) that X l = (X1l, . . . , Xpl)

t ∼ Np(µ, σ
2I),

l = 1, . . . , r, so that the ‘sample size’ appearing in BIC should be r.

• The ‘effective sample size’ for each µi is r, but the effective sample size

for σ2 is pr, so effective sample size is parameter-dependent.

• One could easily be in the situation where p → ∞ but the effective

sample size r is fixed.

Example - Random effects group means: µi ∼ N(ξ, τ2), with ξ and

τ2 being unknown. What is the number of parameters? (see Pauler, 1998

Biometrika)
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Example - Common mean, differing variances: Suppose n/2 of the

Yi are N(θ, 1), while n/2 are N(θ, 1000). Clearly the ‘effective sample size’

is roughly n/2.

Example - ANOVA: Y = (Y1, . . . , Yn)
t ∼ Nn(Xβ, σ2I), where X is a

given n× p matrix of 1’s and -1’s with orthogonal columns, where

β = (β1, . . . , βp)
t and σ2 are unknown. Then the information matrix for

θ = (β, σ2) is Î =

 n
σ̂2 Ip×p 0

0 n
2σ̂4

 , so that now the effective sample size

appears to be n for all parameters.

Note: The group means problem and ANOVA are linear models, so one

can have effective sample sizes from r = 1 to n for parameters in the linear

model.
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PBIC: a proposed solution

Preliminary ‘nice’ reparameterization.

Choose a ‘good’ transformation to make the Laplace approximation as

accurate as possible. In particular, all parameters should lie in (−∞,∞).

For variances, it is typical to define ν = log σ2 as the parameter.

By a Taylor’s series expansion about the mle θ̂,

m(x) =

∫
f(x | θ)π(θ)dθ =

∫
el(θ)π(θ)dθ

≈
∫

exp

[
l(θ̂) + (θ − θ̂)t∇l(θ̂)− 1

2
(θ − θ̂)tÎ(θ − θ̂)

]
π(θ)dθ

where ∇ denotes the gradient and Î = (Îjk) is the observed information

matrix, with (j, k) entry

Îjk = − ∂2

∂θj∂θk
log f(x | θ )

∣∣∣
θ =θ̂

.
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If θ occurs on the interior of the parameter space, so ∇l(θ̂) = 0 (if not true,

the analysis must proceed as in Haughton (1991,1993)), mild conditions yield

m(x) = el(
ˆθ)

∫
e−

1
2 (θ−ˆθ)t

ˆI(θ− ˆθ)π(θ)dθ(1 + on(1)) .

Note 1. Usually π(θ) is also included in the expansion. We will instead

choose π(θ) to be a ‘good’ prior for which the integral above is closed form.

Note 2. The term on(1) is absent in normal likelihoods, so all expressions

will be exact in normal scenarios.
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If there are any common parameters in all models (as in regression, when

all models usually have the intercept), integrate them out dθ.

Assuming no common parameters (for convenience) we choose the prior

π(θ) as follows:

• Let O be orthogonal and D = diag(di) such that Î
−1

= OtDO and

make the change of variables ξ = Oθ, ξ̂ = Oθ̂.

• For each ξi and following Kass and Wasserman (1995 JASA), let

(bi)
−1 = (nidi)

−1 = 1/di

ni
be the “unit information” for ξi, with ni being

the “effective sample size” for ξi.

• Instead of using the unit information Cauchy or intrinsic priors, choose

the prior (from Berger 1985, generalizing the Strawderman prior)

π(ξ) =

p∏
i=1

πR
i (ξi) , πR

i (ξi) =

∫ 1

0

N

(
ξi

∣∣∣ 0, 1

2λi
(di + bi)− di

)
1

2
√
λi

dλi ,

which is very close to the unit information Cauchy or intrinsic prior.
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Then

m(x) ≈ el(
ˆθ)(2π)p/2|Î|−1/2

 p∏
i=1

1√
2π(di + bi)

(
1− e−ξ̂2i /(di+bi)

)
√
2 ξ̂2i /(di + bi)

 .

and, we have, as the approximation to −2 logm(x),

PBIC = −2l(θ̂)+

p∑
i=1

log(1+ni)−2

p∑
i=1

log
(1− e−vi)√

2 vi
, where vi =

ξ̂2i
bi + di

.

The error, as an approximation to −2 logm(x), is on(1). (Note that it is

exact for normal likelihoods.)

If all ni = n, the dominant terms in the expression (as n → ∞) are

−2l(θ̂) + p log n. The third term is negative.
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PBIC*: A Modification More Favorable to Complex Models

Concern: Do unit-information Cauchy-type priors centered at zero

penalize complex models too much?

• Raftery (1996 Biometrika) proposed unit-information normal priors

centered at the mle’s for the parameters, but this can be argued to

favor complex models too much.

• An attractive compromise is to use the robust priors centered at zero,

but with the scales, bi, chosen to maximize m(x). This is the empirical

Bayes alternative, popularized in the robust Bayesian literature (see,

e.g., Berger, 1994 Test). The bi that maximizes m(x) is

b̂i = max{di,
ξ̂2i
w

− di}, with w s.t. ew = 1 + 2w, or w ≈ 1.3 .

• Problem: When ξi = 0, this empirical Bayes choice can result in

inconsistency as ni → ∞.

• Solution: prevent bi from being less than nidi, using b̃i = max{nidi, b̂i}.
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Consistency of PBIC

PBIC and PBIC* are consistent as the effective sample sizes ni → ∞ with

p fixed, since the priors are then essentially fixed priors.

Much harder is consistency as p → ∞, with ni fixed.

Theorem 1 For the group means problem with fixed r and known σ2,

consider comparison of M0 : µ1 = · · · = µp = 0 with the full model

M1 : all µi nonzero. PBIC and PBIC* are consistent under M0 as p → ∞.

Under M1 and assuming V ≡ limp→∞
1
p

∑p
i µ

2
i exists, they are

consistent if V >
1

r
[log 2 + log(1 + r) + 1] ;

inconsistent if V <
1

r
[log 2 + log(1 + r)− 1] .

Note 1: Inconsistency results only when M1 is close to M0. (Mukhopadhyay,

Ghosh, and Berger, 2005 SPL, showed a multivariate Cauchy prior is always consistent.)

Note 2: The theorem applies to any two models for which the difference in

dimensions goes to ∞.
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A small comparative simulation:

Berger, Ghosh and Mukhopadhayay (2003) computed Laplace

approximations to the marginal density with a multivariate Cauchy prior;

they called GBIC the resulting logm(x ) and showed that it was consistent.

This original GBIC, which inspired our PBIC’s, does not have closed form

expression. Berger et al. (2003) give an approximation valid when∑
x̄2
i > r−1 + ϵ for some ϵ > 0 as p → ∞.

We next compare our PBIC’s and this approximated, closed-form

expression GBIC (note, however that the condition is likely to be violated when

sampling from the null model, or whenever it is likely to get many x2
i near 0, and

then the simplified expression used would not be a good approximation to Berger

et al. (2003) proposal.)
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We generate 500 sets of observations with several values for p and r, under

the following conditions:

a) All observations Xir ∼ N(0, 1) (null model);

b) the p group means (the µi) were generated from a N(2,1), (and then

the 500 sets of Xir from the N(µi, 1));

c) similar to the previous one, but the µi generated from an exponential

with mean 2

d) one µi is set to 10, and the rest to 0 (note neither the null nor the

alternative are true)

The following table gives the mean and standard deviation of △GBIC

(denoted △O), our △PBIC proposal (denoted △N ), and the robust

modification (denoted △R).
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µ = 0 µi ∼ N(2, 1) µi ∼ Ex(µ = 2) µ1 = 10, µi = 0

p, r △PBIC mean s.d. mean s.d. mean s.d. mean s.d.

p = 2 △o 0.383 1.38 17.89 9.17 7.8 6.2 180 27

r = 2 △N −2.155 1.42 16.54 8.64 7.4 6.1 187 28

(p=5 last) △R −2.117 1.54 19.58 9.9 8.9 7.07 194 28

p = 15 △o -1.64 1.65 92.96 20.31 257 33.5 157 26

r = 2 △N -16.47 4.18 87.66 19.65 258 33.4 175 27

△R -16.20 4.58 103.56 22.28 281 34.9 183 28

p = 200 △o 56 17

r = 2 △N −27 31

△R −17 32

Table 1: For the group means problem, the means and standard deviations of various

∆PBIC ≡ PBICµ =0 − PBICµ ̸=0 for sets of 500 replications, under different assump-

tions about the group means.

∆0 :Cauchy, ∆N :new PBIC, ∆R :robust PBIC.
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IV. The Effective Sample Size (in Linear
Models)

with Susie Bayarri and Luis Pericchi
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Recall the question: what is the effective sample size n for a
parameter?

• Is n the number of vector observations or the number of real

observations?

• Different θi can have different effective sample sizes

• Some observations can be more informative than others (as in mixture

contexts, models with mixed continuous and discrete observations, ...)
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A Solution for Linear Models

Assume that:

• all linear models under consideration are of the form

Y = Xβ + ε, where ε ∼ N(0,Γ), Γ known ,

with dimensions Y [n×1], β[p×1]

• β is the original parameter of interest to the investigator.

• no component of β can be considered ‘common’ to all models.

In a preliminary step, ‘common’ parameters (appearing in all models)

are orthogonalized to β, and do not require assessment of effective

sample size.
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TESS defines the effective sample size for any scalar linear transformation

ξ = v β (v is [1× p]) of β to be

ne =
|v|2

vC(XtΓ−1X)−1C vt

• C [p×p] is diagonal with entries cii = max
j

{|Xji|/σj}

• Γ = σRσ, with σ = diag{σ1, . . . , σp}, R is correlation matrix

The “unit information” prior scale for ξ is then b = dne, where

d = v(XtΓ−1X)−1vt is the variance of ξ̂
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Group means example

Assume Yij = µi + εij for i = 1, .., p groups, j = 1, .., ri replicates in ith

group, εij ∼ N(0, σ2) i.i.d. Here

ne =


r1

. . .

rp

 and TESS for µi is ne
i = ri

– ri could be 1, which can be seen to be the lower bound on TESS for

linear models when Γ = σ2I, which is intuitively reasonable

– the prior scale for µi is bi = σ2.
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Simple Linear Regression

Y =


X1

...

Xn

 β +


ε1
...

εn

 , where ε ∼ N(0, σ2I) .

The effective sample size and prior scale for β are, respectively,

ne =

∑n
i=1 X

2
i

(maxi |Xi|)2
and b = σ2 . (2)

Let’s consider some particular cases
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Case 1: X = (X1, δ, . . . , δ)
t, with δ very small. Here

ne = 1 +
(n− 1)δ

X2
1

≈ 1, for small δ, an intuitive result

Case 2: X = (1, . . . , 1)t. Here ne = n, which agrees with intuition.

Case 3: X = (X1, . . . , Xn)
t, with Xi

i.i.d.∼ N(k, 1). For large n

• if k = 0, ne ≈ n/(2 log n− 3)

• at the other extreme, if k large compared to log n, ne ≈ n

Case 4: Xi = 1/
√
i, i = 1 . . . , n. This is Findley’s counter example to

consistency of BIC. Here ne =
∑n

i=1 1/i ≈ log(n+ 1) which behaves

like log n and the inconsistency observed by Findley disappears.
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Orthogonal and Related Designs

Assume that X has orthogonal columns with entries ±ai ̸= 0, and that

Γ = σ2I.

• Here TESS gives ne
i = n for each βi

• When Γ = σ2I and any other design matrix X is used, the effective

sample sizes will be less than n

note: This along with the result for the group means example, establishes

that when Γ = σ2I, TESS will always be between 1 and n, with both limits

attainable
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Heteroscedastic independent observations

Assume Yi = µ+ εi, εi independent, εi ∼ N(0, σ2
i ), i = 1, . . . , n. Here the

effective sample size and prior scale for µ are

ne =

∑n
i=1 1/σ

2
i

maxi{1/σ2
i }

, b = min
i
{σ2

i } .

Particular Case: observations with little information. Suppose

that, for i = 1, . . . , n1, we have Yi ∼ N(µ, σ2
1), whereas for the remaining

n2 = n− n1 observations, Yi ∼ N(µ, σ2
2), where σ2

2 is much larger than σ2
1 ,

so that intuitively only the first n1 observations count. Then, unless n2 is

large,

ne =
n1/σ

2
1 + n2/σ

2
2

1/σ2
1

= n1 + n2
σ2
1

σ2
2

≈ n1 .
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Correlated observations

Let Yi = µ+ εi, i = 1, . . . , n, but where the εi are not independent, with

ε ∼ N(0,Γ) with Γ non diagonal. Here

ne =
1t Γ−11

maxi{ 1
σ2
i
}
, and b = min

i
σ2
i

Particular case 1. Consider Γ = σ2


1 ρ · · · ρ
...

. . .
...

ρ · · · 1

 .

Then ne =
n

1 + (n− 1)ρ
and b = σ2
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Note that

ne −→


1, as ρ → 1

n, as ρ → 0

∞, as ρ → −1/(n− 1)

, and b = σ2 ,

all intuitively reasonable results (in the last case, we know µ = x̄)

Note: effective sample size can be larger than n in the presence of negative

correlation, but prior scales remains constant (σ2) ; Bayesian analysis will

automatically adjust for correlations.
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Particular case 2. Consider now a general R for n = 2, and assume

σ2
1 < σ2

2 , so that

Y =

 1

1

µ+ ε , ε ∼ N(0,Γ), with Γ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .

Here ne = 1 +
(σ1

σ2
− ρ)2

1− ρ2
and b = σ2

1

• minimum value for TESS is ne = 1, when ρ = σ1/σ2

• ne → ∞ as |ρ| → 1

recall: when σ1 = σ2, n
e → 1 as ρ → 1

Here, when ρ = ±1 we know µ perfectly, corresponding to ‘infinite

sample information’.

39



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

Argument for TESS

The precision d−1 of ξ̂ is roughly the effective sample size, except that it

has three type of scale factors in it that need to be removed:

(i) the scales arising from the σj in Γ,

(ii) the scales arising from possible arbitrariness in the scaling of the

columns of X.

(iii) the scales arising from possible arbitrariness in the definition of ξ

Step 1. Remove σ scales ; divide original observation Yi by its

standard deviation σi, i = 1, . . . , n. That is:

The original model: Y = Xβ + ε, ε ∼ N(0,Γ),

transforms to: Ỹ = X̃β + ε̃, ε̃ ∼ N(0,R), where

Ỹ = σ−1 Y , and X̃ = σ−1 X .
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Step 2. Remove X scales ; divide columns of X̃ by their maximum

(other scalings are possible: to be pursued)

After Steps 1 and 2, we have transformed the original model to the

following “scale free” model

Ỹ = X∗β∗ + ε̃, ε̃ ∼ N(0,R), where

• X∗ = X C −1

C is diagonal with cii = max
j

{
|Xji|
σj

}
i = 1, . . . , p.

• β∗ = Cβ =


c11β1

...

cppβp


is like a ‘scale free’ version of the original parameter β.
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Step 3. Compute TESS for original parameters. We define the

effective sample size matrix for the original parameter β as the

precision of β̂∗ the MLE in the scale free formulation, giving

ne
o = C −1(XtΓ−1X)C −1 .

Step 4. TESS for the parameters of interest. We define TESS for

any scalar transformation v β by

[ṽ (ne
o)

−1 ṽt]−1 , where ṽ = v/|v|

Note: we have removed arbitrariness in the scale of v so TESS for ξ is

the same as TESS for k ξ
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Current Status

• We are happy with PBIC, although both PBIC and PBIC* should

typically be considered.

– Note that these are exact expressions if the likelihoods are normal

and can, hence, even be used as p → ∞.

• We are happy with TESS in linear models, in that

– it has desirable scale-free properties;

– it produces pleasant surprises;

– we have no examples of it failing to provide a sensible answer.

• We are not happy with the following possible definition of effective

sample size in non-linear models.
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Effective Sample Size in Nonlinear Models

A possible general definition for the ‘effective sample size’ follows from

considering the information associated with observation xi arising from the

single-observation expected information matrix I∗
i = O′(I∗i,jk)O, where

I∗i,jk = −E

[
∂2

∂θj∂θk
log fi(xi | θ)

] ∣∣∣
θ=

ˆθ
.

Since I∗jj =
∑n

i=1 I
∗
i,jj is the expected information about ξj , a reasonable

way to define nj is

• define information weights wij = I∗i,jj/
∑n

k=1 I
∗
k,jj ;

• define the effective sample size for ξj as

nj =
I∗jj∑n

i=1 wijI∗i,jj
=

(
I∗jj

)2∑n
i=1

(
I∗i,jj

)2 .

Intuitively,
∑

wijI
∗
i,jj is a weighted measure of the information ‘per

observation’, and dividing the total information about ξj by this

information per case seems plausible as an effective sample size.

44



CBMS: Model Uncertainty and Multiplicity Santa Cruz, July 23-28, 2012'

&

$

%

References

[1] Dudley, R. and Haughton, D. (1997). Information Criteria for Multiple Data
Sets and Restricted Parameters. Statistica Sinica, 7, 265–284.

[2] Kass, R.E., and Raftery, A.E. (1995). Bayes factors. JASA 90, 773–795.

[3] Kass, R.E., and Vaiyanathan, S. (1992). Approximate Bayes factors and
orthogonal parameters, with applications to testing equality of two binomial
proportions. JRRS B 54, 129–144.

[4] Kass, R.E., and Wasserman, L. (1995). A Reference test for neste hypothesis
and its relationship to the Schwarz criterion. JASA 90, 928–934.

[5] Pauler, D. (1998). The Schwarz criterion and related methods for normal
linear models. Biometrika 85, 13–27.

[6] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6,
461–464.

[7] Tirney, L., and Kadane, J.B. (1986). Accurate approximations of posterior
moments and marginal densities. JASA 81, 82–86.

45


