Lecture 7: Approximations

Jim Berger

Duke University

CBMS Conference on Model Uncertainty and Multiplicity July 23-28, 2012

Outline

- Laplace approximation
- BIC and AIC
- Prior-based BIC
- The effective sample size

I. Laplace Approximation

Goal: Analytically approximate the marginal density

$$m(oldsymbol{x}\)=\int f(oldsymbol{x}\ \midoldsymbol{ heta}\)\pi(oldsymbol{ heta}\)doldsymbol{ heta}$$

Preliminary 'nice' reparameterization: Choose a 'good' transformation to make the Laplace approximation as accurate as possible. In particular, all parameters should lie in $(-\infty, \infty)$.

- For variances, transform to $\nu = \log \sigma^2$ as the parameter.
- For a probability p, transform to, e.g., $\nu = \log \frac{p}{1-p}$.

Definitions: Let $\mathcal{L}(\boldsymbol{\theta}) = \log f(\boldsymbol{x} \mid \boldsymbol{\theta})$ denote the log-likelihood, maximized at the mle $\hat{\boldsymbol{\theta}}$, and let $\hat{\boldsymbol{I}}$ denote the *observed* Fisher Information matrix $I(\hat{\boldsymbol{\theta}})$, where the Fisher Information matrix $\boldsymbol{I}(\boldsymbol{\theta})$ has (i, j) element

$$I_{ij}(\boldsymbol{ heta}\) = -rac{\partial^2 \mathcal{L}(\boldsymbol{ heta}\)}{\partial heta_i \, \partial heta_j}\,.$$

Expanding $\mathcal{L}(\boldsymbol{\theta}) = \log f(\boldsymbol{x} \mid \boldsymbol{\theta})$ about its maximum $\hat{\boldsymbol{\theta}}$, yields ^a $\mathcal{L}(\boldsymbol{\theta}) \approx \mathcal{L}(\hat{\boldsymbol{\theta}}) - \frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^t \hat{\boldsymbol{I}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}).$

If $\pi(\boldsymbol{\theta})$ is relatively flat near $\hat{\boldsymbol{\theta}}$, where $\mathcal{L}(\boldsymbol{\theta})$ is non negligible^b,

$$\begin{split} m(\boldsymbol{x}) &= \int f(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} \\ &\approx \pi(\hat{\boldsymbol{\theta}}) \int f(\boldsymbol{x} \mid \boldsymbol{\theta}) d\boldsymbol{\theta} \\ &\approx \pi(\hat{\boldsymbol{\theta}}) f(\boldsymbol{x} \mid \hat{\boldsymbol{\theta}}) \int \exp\left\{-\frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^t \hat{\boldsymbol{I}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})\right\} d\boldsymbol{\theta} \\ &= \pi(\hat{\boldsymbol{\theta}}) f(\boldsymbol{x} \mid \hat{\boldsymbol{\theta}}) (2\pi)^{\frac{p}{2}} |\hat{\boldsymbol{I}} |^{-1/2} \,, \end{split}$$

where p is the dimension of $\boldsymbol{\theta}$.

^awe assume that \mathcal{L} has continuous second partial derivatives and that the first partial derivative vanishes at $\hat{\theta}$

^bThis will be true if $\mathcal{L}(\theta)$ is highly peaked in a small neighborhood around $\hat{\theta}$, which is typically de case for large n

Improved approximation: Define $\mathcal{L}_{\pi}(\boldsymbol{\theta}) = \log[f(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})]$, and let $\hat{\boldsymbol{\theta}}_{\pi}$ and $\hat{\boldsymbol{I}}_{\pi}$ be the maximum and Hessian for this function. Then

$$m(\boldsymbol{x}) \approx \pi(\hat{\boldsymbol{\theta}}_{\pi}) f(\boldsymbol{x} \mid \hat{\boldsymbol{\theta}}_{\pi}) (2\pi)^{\frac{p}{2}} |\hat{\boldsymbol{I}}_{\pi}|^{-1/2}.$$

Comments:

The approximation is of order $n^{-1/2}$ (under regularity conditions).

Kass and Raftery (95) \sim samples of size less than 5p worrisome, larger than 20p fine for 'usual' problems with 'good' parameterizations.

Use of *Fisher information*) itself, instead of \hat{I} , is worse.

If applied to both the numerator and denominator of a Bayes factor, the approximation can be much better still (errors canceling).

Another approximation: For an objective estimation prior $\pi^{O}(\boldsymbol{\theta})$,

$$\begin{split} m(\boldsymbol{x}) &= \int f(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} \\ &= \int f(\boldsymbol{x} \mid \boldsymbol{\theta}) \frac{\pi(\boldsymbol{\theta})}{\pi^{O}(\boldsymbol{\theta})} \pi^{O}(\boldsymbol{\theta}) d\boldsymbol{\theta} \\ &\approx \frac{\pi(\hat{\boldsymbol{\theta}})}{\pi^{O}(\hat{\boldsymbol{\theta}})} \int f(\boldsymbol{x} \mid \boldsymbol{\theta}) \pi^{O}(\boldsymbol{\theta}) d\boldsymbol{\theta} \\ &= \frac{\pi(\hat{\boldsymbol{\theta}})}{\pi^{O}(\hat{\boldsymbol{\theta}})} m^{O}(\boldsymbol{x}) \,. \end{split}$$

This is useful when $m^{O}(\boldsymbol{x}) = \int f(\boldsymbol{x} | \boldsymbol{\theta}) \pi^{O}(\boldsymbol{\theta}) d\boldsymbol{\theta}$ is available in closed form, as it applies with virtually no regularity conditions (Berger and Pericchi, 1996).

(First) Laplace approximation to Bayes factors: Apply Laplace expansion to numerator and denominator of B_{21} to get the Laplace approximation to B_{21} :

$$B_{21}^{L} = \frac{\int f_{2}(\boldsymbol{x} \mid \boldsymbol{\theta}_{2}) \pi_{2}(\boldsymbol{\theta}_{2}) d\boldsymbol{\theta}_{2}}{\int f_{1}(\boldsymbol{x} \mid \boldsymbol{\theta}_{1}) \pi_{1}(\boldsymbol{\theta}_{1}) d\boldsymbol{\theta}_{1}} \\ \approx \frac{\pi_{2}(\hat{\boldsymbol{\theta}}_{2}) f_{2}(\boldsymbol{x} \mid \hat{\boldsymbol{\theta}}_{2}) |\hat{\mathbf{I}}_{2}|^{-1/2} (2\pi)^{p_{2}/2}}{\pi_{1}(\hat{\boldsymbol{\theta}}_{1}) f_{1}(\boldsymbol{x} \mid \hat{\boldsymbol{\theta}}_{1}) |\hat{\mathbf{I}}_{1}|^{-1/2} (2\pi)^{p_{1}/2}},$$

where $\hat{\theta}_1$ and $\hat{\theta}_2$ are the m.l.e.'s for θ_1 and θ_2 (which have dimensions p_1 and p_2) and $\hat{\mathbf{I}}_1$ and $\hat{\mathbf{I}}_2$ are observed information matrices.

Large *n* and i.i.d. data: Then $\hat{\mathbf{I}}_i \approx n\mathbf{I}_i^*$, where \mathbf{I}_i^* is the expected Fisher information for a single observation in M_i , and

$$B_{21}^{L} \approx \frac{f_{2}(\boldsymbol{x} \mid \hat{\boldsymbol{\theta}}_{2})}{f_{1}(\boldsymbol{x} \mid \hat{\boldsymbol{\theta}}_{1})} \cdot n^{-\frac{1}{2}(p_{2}-p_{1})} \cdot \frac{|\mathbf{I}_{2}^{*}|^{-1/2}(2\pi)^{p_{2}/2}\pi_{2}(\hat{\boldsymbol{\theta}}_{2})}{|\mathbf{I}_{1}^{*}|^{-1/2}(2\pi)^{p_{1}/2}\pi_{1}(\hat{\boldsymbol{\theta}}_{1})}.$$
 (1)

II. BIC and AIC

BIC (Bayes Information Criterion)

The Schwarz (78) approximation to Bayes factors is based on simply ignoring the last term in (1), because it is constant in n and so not as important as the first two terms:

$$B_{21}^{BIC} pprox rac{f_2(\boldsymbol{x} \mid \hat{\boldsymbol{ heta}}_2)}{f_1(\boldsymbol{x} \mid \hat{\boldsymbol{ heta}}_1)} \cdot n^{-rac{1}{2}(p_2 - p_1)} \,.$$

Raftery notes that, if one takes $\pi_i(\boldsymbol{\theta}_i)$ to be $N(\boldsymbol{\theta}_i \mid \hat{\boldsymbol{\theta}}_i, \mathbf{I}_i^{*(-1)})$ (a unit information prior centered at the mle), the third term in (1) is exactly 1. REF.: Schwarz (1978), Kass and Wasserman (1995), Dudley and Haughton (1997), Kass and Vaidyanathan (1992), Pauler (1998). Typically, instead of using the Bayes factor directly, one uses the BIC criterion

$$BIC_i = -2\log f_i(\boldsymbol{x} \mid \hat{\boldsymbol{\theta}}_i) + p_i \log n \quad (\approx -2\log m_i(\boldsymbol{x})),$$

so that

$$BIC_2 - BIC_1 = -2\log B_{21}^{BIC}$$
.

For multiple models, one just chooses that model with minimal BIC_i .

The main justification that Schwarz gave for BIC is that it is consistent, i.e. will select the correct model as $n \to \infty$. (The constant terms that BIC ignores are irrelevant asymptotically.)

Akaike's Information Criterion (AIC)

Criterion: AIC chooses the model M_i minimizing

$$AIC_i = -2\log f(\boldsymbol{x} \mid \hat{\boldsymbol{\theta}}_i) + 2p_i$$

here, the 'penalty' for dimension p_i is $2 p_i$, so AIC has 'penalty' 2, whereas BIC has 'penalty' $\log n \rightsquigarrow AIC$ tends to choose larger models.

Bayes factor: AIC criterion corresponds to using

$$B_{21}^{AIC} \approx \frac{f_2(\boldsymbol{x}|\hat{\boldsymbol{\theta}}_2)}{f_1(\boldsymbol{x}|\hat{\boldsymbol{\theta}}_1)} \cdot e^{-2(p_2 - p_1)},$$

which cannot arise from any reasonable prior.

AIC versus BIC. Roughly:

AIC can be better than BIC if

- Complexity of models grows with $n \ (p_i \to \infty \text{ as } n \to \infty)$
- None of the models is correct and the goal is good prediction rather than deciding which of the models is true.

BIC is usually better than AIC if

– There is a set of fixed models and n is large, since then AIC is not even consistent.

Example Testing a normal mean

- $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} N(\theta, 1)$
- To test $M_1: \theta = 0$ vs $M_2: \theta \neq 0$, $z = \sqrt{n} \bar{x}$
- $B_{21}^{AIC} = e^{(\frac{1}{2}z^2 2)}$
- Note that, as $n \to \infty$ under $M_1: \theta = 0$, $z = \sqrt{n} \, \bar{x} \sim N(0, 1)$
- Thus $B_{21}^{AIC} > 1$ with positive probability as $n \to \infty$, so that AIC is not consistent under M_1
- One of the models is (approximately) true.
- Simple models are desired for other reasons.

III. Prior-Based BIC

Prior-based BIC (PBIC)

(done with a SAMSI Social Sciences working group - Susie Bayarri, Woncheol Jang, Luis Pericchi, Surajit Ray, and Ingmar Visser; the context was "getting the model right, in structural equation modeling.")

Data: Independent vectors $\mathbf{x}_i \sim g_i(\mathbf{x}_i \mid \boldsymbol{\theta})$, for $i = 1, \ldots, n$.

Unknown: $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p); \, \hat{\boldsymbol{\theta}} \text{ is the MLE}$

Log-likelihood function: $l(\boldsymbol{\theta}) = \log f(\mathbf{x} \mid \boldsymbol{\theta}) = \log \left(\prod_{i=1}^{n} g_i(\mathbf{x}_i \mid \boldsymbol{\theta})\right)$ where $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$.

Usual BIC: BIC $\equiv -2l(\hat{\theta}) + p \log n$ (Schwarz, 1978 AOS)

As $n \to \infty$ (with p fixed) this is an approximation (up to a constant) to twice the log of the Bayesian log likelihood for the model, $m(\mathbf{x}) = \int f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$, so that

$$m(\mathbf{x}) = c_{\pi} e^{-BIC/2} (1 + o(1)).$$

Some of the problems with BIC

- Can the constant c_{π} from the prior be ignored?
- Problems with p.
 - What is p with random effects or latent variables?
 - What if p grows with n?
- Problems with n.
 - Is n the number of vector observations or the number of real observations?
 - What if different θ_i have different effective sample sizes?
 - What if observations vary significantly in information (as possible in mixture contexts, models with mixed continuous and discrete observations, ...)?

Example - Group means: For i = 1, ..., p and l = 1, ..., r,

$$X_{il} = \mu_i + \epsilon_{il}$$
, where $\epsilon_{il} \sim N(0, \sigma^2)$.

- It might seem that n = pr but, if one followed Schwarz, one would have (defining $\boldsymbol{\mu} = (\mu_1, \dots, \mu_p)^t$) that $\boldsymbol{X}_l = (X_{1l}, \dots, X_{pl})^t \sim N_p(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I}),$ $l = 1, \dots, r$, so that the 'sample size' appearing in BIC should be r.
- The 'effective sample size' for each μ_i is r, but the effective sample size for σ^2 is pr, so effective sample size is parameter-dependent.
- One could easily be in the situation where $p \to \infty$ but the effective sample size r is fixed.

Example - Random effects group means: $\mu_i \sim N(\xi, \tau^2)$, with ξ and τ^2 being unknown. What is the number of parameters? (see Pauler, 1998 Biometrika)

Example - Common mean, differing variances: Suppose n/2 of the Y_i are $N(\theta, 1)$, while n/2 are $N(\theta, 1000)$. Clearly the 'effective sample size' is roughly n/2.

Example - ANOVA: $\boldsymbol{Y} = (Y_1, \ldots, Y_n)^t \sim N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, where \boldsymbol{X} is a given $n \times p$ matrix of 1's and -1's with orthogonal columns, where $\boldsymbol{\beta} = (\beta_1, \ldots, \beta_p)^t$ and σ^2 are unknown. Then the information matrix for $\boldsymbol{\theta} = (\boldsymbol{\beta}, \sigma^2)$ is $\hat{\boldsymbol{I}} = \begin{pmatrix} \frac{n}{\hat{\sigma}^2} I_{p \times p} & 0\\ 0 & \frac{n}{2\hat{\sigma}^4} \end{pmatrix}$, so that now the effective sample size appears to be n for all parameters.

Note: The group means problem and ANOVA are linear models, so one can have effective sample sizes from r = 1 to n for parameters in the linear model.

PBIC: a proposed solution

Preliminary 'nice' reparameterization.

Choose a 'good' transformation to make the Laplace approximation as accurate as possible. In particular, all parameters should lie in $(-\infty, \infty)$. For variances, it is typical to define $\nu = \log \sigma^2$ as the parameter.

By a Taylor's series expansion about the mle $\hat{\theta}$,

$$m(\mathbf{x}) = \int f(\mathbf{x} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} = \int e^{l(\boldsymbol{\theta})} \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$
$$\approx \int \exp\left[l(\hat{\boldsymbol{\theta}}) + (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^t \nabla l(\hat{\boldsymbol{\theta}}) - \frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^t \hat{\boldsymbol{I}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})\right] \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

where ∇ denotes the gradient and $\widehat{I} = (\widehat{I}_{jk})$ is the observed information matrix, with (j, k) entry

$$\hat{I}_{jk} = -\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f(\mathbf{x} \mid \boldsymbol{\theta}) \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}}.$$

If $\boldsymbol{\theta}$ occurs on the interior of the parameter space, so $\nabla l(\hat{\boldsymbol{\theta}}) = 0$ (if not true, the analysis must proceed as in Haughton (1991,1993)), mild conditions yield

$$m(\mathbf{x}) = e^{l(\hat{\boldsymbol{\theta}})} \int e^{-\frac{1}{2}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^t \hat{\boldsymbol{I}}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})} \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} (1 + o_n(1)).$$

Note 1. Usually $\pi(\theta)$ is also included in the expansion. We will instead choose $\pi(\theta)$ to be a 'good' prior for which the integral above is closed form. Note 2. The term $o_n(1)$ is absent in normal likelihoods, so all expressions will be *exact* in normal scenarios. If there are any *common* parameters in all models (as in regression, when all models usually have the intercept), integrate them out $d\theta$.

Assuming no common parameters (for convenience) we choose the prior $\pi(\boldsymbol{\theta})$ as follows:

- Let O be orthogonal and $D = \text{diag}(d_i)$ such that $\hat{I}^{-1} = O^t DO$ and make the change of variables $\boldsymbol{\xi} = O\boldsymbol{\theta}, \ \hat{\boldsymbol{\xi}} = O\hat{\boldsymbol{\theta}}.$
- For each ξ_i and following Kass and Wasserman (1995 JASA), let $(b_i)^{-1} = (n_i d_i)^{-1} = \frac{1/d_i}{n_i}$ be the "unit information" for ξ_i , with n_i being the "effective sample size" for ξ_i .
- Instead of using the unit information Cauchy or intrinsic priors, choose the prior (from Berger 1985, generalizing the Strawderman prior)

$$\pi(\xi) = \prod_{i=1}^{p} \pi_{i}^{R}(\xi_{i}), \quad \pi_{i}^{R}(\xi_{i}) = \int_{0}^{1} N\left(\xi_{i} \mid 0, \frac{1}{2\lambda_{i}}(d_{i}+b_{i}) - d_{i}\right) \frac{1}{2\sqrt{\lambda_{i}}} d\lambda_{i},$$

which is very close to the unit information Cauchy or intrinsic prior.

Then

$$m(\mathbf{x}) \approx e^{l(\hat{\boldsymbol{\theta}})} (2\pi)^{p/2} |\hat{\boldsymbol{I}}|^{-1/2} \left[\prod_{i=1}^{p} \frac{1}{\sqrt{2\pi(d_i + b_i)}} \frac{\left(1 - e^{-\hat{\xi}_i^2/(d_i + b_i)}\right)}{\sqrt{2}\,\hat{\xi}_i^2/(d_i + b_i)} \right]$$

and, we have, as the approximation to $-2\log m(\mathbf{x})$,

$$\text{PBIC} = -2l(\hat{\theta}) + \sum_{i=1}^{p} \log(1+n_i) - 2\sum_{i=1}^{p} \log\frac{(1-e^{-v_i})}{\sqrt{2}v_i}, \text{ where } v_i = \frac{\hat{\xi}_i^2}{b_i + d_i}$$

The error, as an approximation to $-2\log m(\mathbf{x})$, is $o_n(1)$. (Note that it is exact for normal likelihoods.)

If all $n_i = n$, the dominant terms in the expression (as $n \to \infty$) are $-2l(\hat{\theta}) + p \log n$. The third term is negative.

PBIC*: A Modification More Favorable to Complex Models

Concern: Do unit-information Cauchy-type priors centered at zero penalize complex models too much?

- Raftery (1996 Biometrika) proposed unit-information normal priors centered at the mle's for the parameters, but this can be argued to favor complex models too much.
- An attractive compromise is to use the robust priors centered at zero, but with the scales, b_i , chosen to maximize $m(\boldsymbol{x})$. This is the empirical Bayes alternative, popularized in the robust Bayesian literature (see, e.g., Berger, 1994 Test). The b_i that maximizes $m(\boldsymbol{x})$ is

$$\hat{b}_i = \max\{d_i, \frac{\hat{\xi}_i^2}{w} - d_i\}, \text{ with } w \text{ s.t. } e^w = 1 + 2w, \text{ or } w \approx 1.3 .$$

- Problem: When $\xi_i = 0$, this empirical Bayes choice can result in inconsistency as $n_i \to \infty$.
- Solution: prevent b_i from being less than $n_i d_i$, using $\tilde{b}_i = \max\{n_i d_i, \hat{b}_i\}$.

Consistency of PBIC

PBIC and PBIC^{*} are consistent as the effective sample sizes $n_i \to \infty$ with p fixed, since the priors are then essentially fixed priors.

Much harder is consistency as $p \to \infty$, with n_i fixed.

Theorem 1 For the group means problem with fixed r and known σ^2 , consider comparison of $M_0: \mu_1 = \cdots = \mu_p = 0$ with the full model $M_1:$ all μ_i nonzero. PBIC and PBIC* are consistent under M_0 as $p \to \infty$. Under M_1 and assuming $V \equiv \lim_{p \to \infty} \frac{1}{p} \sum_{i}^{p} \mu_i^2$ exists, they are consistent if $V > \frac{1}{r} [\log 2 + \log(1+r) + 1];$ inconsistent if $V < \frac{1}{r} [\log 2 + \log(1+r) - 1].$ Note 1: Inconsistency results only when M_1 is close to M_0 . (Mukhopadhyay, Ghosh, and Berger, 2005 SPL, showed a multivariate Cauchy prior is always consistent.)

Note 2: The theorem applies to any two models for which the difference in dimensions goes to ∞ .

A small comparative simulation:

Berger, Ghosh and Mukhopadhayay (2003) computed Laplace approximations to the marginal density with a multivariate Cauchy prior; they called GBIC the resulting $\log m(\boldsymbol{x})$ and showed that it was consistent. This original GBIC, which inspired our PBIC's, does not have closed form expression. Berger et al. (2003) give an approximation valid when $\sum \bar{x}_i^2 > r^{-1} + \epsilon$ for some $\epsilon > 0$ as $p \to \infty$.

We next compare our PBIC's and this approximated, closed-form expression GBIC (note, however that the condition is likely to be violated when sampling from the null model, or whenever it is likely to get many x_i^2 near 0, and then the simplified expression used would not be a good approximation to Berger et al. (2003) proposal.) We generate 500 sets of observations with several values for p and r, under the following conditions:

- a) All observations $X_{ir} \sim N(0, 1)$ (null model);
- b) the p group means (the μ_i) were generated from a N(2,1), (and then the 500 sets of X_{ir} from the $N(\mu_i, 1)$);
- c) similar to the previous one, but the μ_i generated from an exponential with mean 2
- d) one μ_i is set to 10, and the rest to 0 (note neither the null nor the alternative are true)

The following table gives the mean and standard deviation of $\triangle \text{GBIC}$ (denoted \triangle_O), our $\triangle \text{PBIC}$ proposal (denoted \triangle_N), and the robust modification (denoted \triangle_R).

		$\mu = 0$		$\mu_i \sim N(2,1)$		$\mu_i \sim Ex(\mu = 2)$		$\mu_1 = 10, \mu_i = 0$	
p,r	△PBIC	mean	s.d.	mean	s.d.	mean	s.d.	mean	s.d.
p=2	\triangle_o	0.383	1.38	17.89	9.17	7.8	6.2	180	27
r = 2	$ riangle_N$	-2.155	1.42	16.54	8.64	7.4	6.1	187	28
(p=5 last)	$ riangle_R$	-2.117	1.54	19.58	9.9	8.9	7.07	194	28
p = 15	\triangle_o	-1.64	1.65	92.96	20.31	257	33.5	157	26
r = 2	$ riangle_N$	-16.47	4.18	87.66	19.65	258	33.4	175	27
	$ riangle_R$	-16.20	4.58	103.56	22.28	281	34.9	183	28
p = 200	\triangle_o							56	17
r=2	$ riangle_N$							-27	31
	\triangle_R							-17	32

Table 1: For the group means problem, the means and standard deviations of various $\Delta PBIC \equiv PBIC_{\mu = 0} - PBIC_{\mu \neq 0}$ for sets of 500 replications, under different assumptions about the group means.

 Δ_0 :Cauchy, Δ_N :new PBIC, Δ_R :robust PBIC.

IV. The Effective Sample Size (in Linear Models)

with Susie Bayarri and Luis Pericchi

Recall the question: what is the effective sample size n for a parameter?

- Is *n* the number of vector observations or the number of real observations?
- Different θ_i can have different effective sample sizes
- Some observations can be more informative than others (as in mixture contexts, models with mixed continuous and discrete observations, ...)

A Solution for Linear Models

Assume that:

• all linear models under consideration are of the form

 $Y = X\beta + \varepsilon$, where $\varepsilon \sim N(0, \Gamma)$, Γ known,

with dimensions $\boldsymbol{Y}_{[n \times 1]}, \ \boldsymbol{\beta}_{[p \times 1]}$

- β is the original parameter of interest to the investigator.
- no component of $\boldsymbol{\beta}$ can be considered 'common' to all models.

In a preliminary step, 'common' parameters (appearing in all models) are orthogonalized to β , and do not require assessment of effective sample size.

TESS defines the effective sample size for any *scalar* linear transformation $\xi = \boldsymbol{v} \boldsymbol{\beta} \ (\boldsymbol{v} \text{ is } [1 \times p]) \text{ of } \boldsymbol{\beta} \text{ to be}$

$$n^e = \; rac{|m{v}|^2}{m{v}\,m{C}(m{X}^tm{\Gamma}^{-1}m{X})^{-1}m{C}\,m{v}^t}$$

- $C_{[p \times p]}$ is diagonal with entries $c_{ii} = \max_{j} \{|X_{ji}| / \sigma_j\}$
- $\Gamma = \sigma R \sigma$, with $\sigma = \text{diag} \{\sigma_1, \ldots, \sigma_p\}, R$ is correlation matrix

The "unit information" prior scale for ξ is then $b = d n^e$, where $d = v(X^t \Gamma^{-1} X)^{-1} v^t$ is the variance of $\hat{\xi}$

Group means example

Assume $Y_{ij} = \mu_i + \varepsilon_{ij}$ for i = 1, ..., p groups, $j = 1, ..., r_i$ replicates in *i*th group, $\varepsilon_{ij} \sim N(0, \sigma^2)$ i.i.d. Here

$$\boldsymbol{n}^e = \left(egin{array}{ccc} r_1 & & \ & \ddots & \ & & r_p \end{array}
ight) ext{ and TESS for } \mu_i ext{ is } n^e_i = r_i$$

- r_i could be 1, which can be seen to be the lower bound on TESS for linear models when $\Gamma = \sigma^2 I$, which is intuitively reasonable

- the prior scale for
$$\mu_i$$
 is $b_i = \sigma^2$.

Simple Linear Regression

$$\boldsymbol{Y} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \beta + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}, \quad \text{where } \boldsymbol{\varepsilon} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I}) .$$

The effective sample size and prior scale for β are, respectively,

$$n^{e} = \frac{\sum_{i=1}^{n} X_{i}^{2}}{(\max_{i} |X_{i}|)^{2}} \quad \text{and} \quad b = \sigma^{2} .$$
(2)

Let's consider some particular cases

Case 1:
$$X = (X_1, \delta, ..., \delta)^t$$
, with δ very small. Here
 $n^e = 1 + \frac{(n-1)\delta}{X_1^2} \approx 1$, for small δ , an intuitive result
Case 2: $X = (1, ..., 1)^t$. Here $n^e = n$, which agrees with intuition.
Case 3: $X = (X_1, ..., X_n)^t$, with $X_i \stackrel{i.i.d.}{\sim} N(k, 1)$. For large n
• if $k = 0, n^e \approx n/(2\log n - 3)$
• at the other extreme, if k large compared to $\log n, n^e \approx n$
Case 4: $X_i = 1/\sqrt{i}, i = 1..., n$. This is Findley's counter example

Case 4: $X_i = 1/\sqrt{i}$, i = 1..., n. This is Findley's counter example to consistency of BIC. Here $n^e = \sum_{i=1}^n 1/i \approx \log(n+1)$ which behaves like $\log n$ and the inconsistency observed by Findley disappears.

Orthogonal and Related Designs

Assume that X has orthogonal columns with entries $\pm a_i \neq 0$, and that $\Gamma = \sigma^2 I$.

- Here TESS gives $n_i^e = n$ for each β_i
- When $\Gamma = \sigma^2 I$ and any other design matrix X is used, the effective sample sizes will be less than n

NOTE: This along with the result for the group means example, establishes that when $\Gamma = \sigma^2 I$, TESS will always be between 1 and n, with both limits attainable

Heteroscedastic independent observations

Assume $Y_i = \mu + \varepsilon_i$, ε_i independent, $\varepsilon_i \sim N(0, \sigma_i^2)$, $i = 1, \ldots, n$. Here the effective sample size and prior scale for μ are

$$n^{e} = \frac{\sum_{i=1}^{n} 1/\sigma_{i}^{2}}{\max_{i}\{1/\sigma_{i}^{2}\}}, \qquad b = \min_{i}\{\sigma_{i}^{2}\}.$$

Particular Case: observations with little information. Suppose that, for $i = 1, ..., n_1$, we have $Y_i \sim N(\mu, \sigma_1^2)$, whereas for the remaining $n_2 = n - n_1$ observations, $Y_i \sim N(\mu, \sigma_2^2)$, where σ_2^2 is much larger than σ_1^2 , so that intuitively only the first n_1 observations count. Then, unless n_2 is large,

$$n^{e} = \frac{n_{1}/\sigma_{1}^{2} + n_{2}/\sigma_{2}^{2}}{1/\sigma_{1}^{2}} = n_{1} + n_{2}\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \approx n_{1}.$$

Correlated observations

Let $Y_i = \mu + \varepsilon_i$, i = 1, ..., n, but where the ε_i are *not* independent, with $\varepsilon \sim N(\mathbf{0}, \Gamma)$ with Γ non diagonal. Here

$$n^{e} = \frac{\mathbf{1}^{t} \mathbf{\Gamma}^{-1} \mathbf{1}}{\max_{i} \{\frac{1}{\sigma_{i}^{2}}\}}, \quad \text{and} \quad b = \min_{i} \sigma_{i}^{2}$$

Particular case 1. Consider
$$\Gamma = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \vdots & \ddots & \vdots \\ \rho & \cdots & 1 \end{pmatrix}$$

Then
$$n^e = \frac{n}{1 + (n-1)\rho}$$
 and $b = \sigma^2$

Note that

$$n^{e} \longrightarrow \begin{cases} 1, & \text{as } \rho \to 1 \\ n, & \text{as } \rho \to 0 \\ \infty, & \text{as } \rho \to -1/(n-1) \end{cases}, \quad \text{and} \quad b = \sigma^{2},$$

all intuitively reasonable results (in the last case, we know $\mu = \bar{x}$)

Note: effective sample size can be larger than n in the presence of negative correlation, but prior scales remains constant $(\sigma^2) \rightsquigarrow$ Bayesian analysis will automatically adjust for correlations.

Particular case 2. Consider now a general \boldsymbol{R} for n = 2, and assume $\sigma_1^2 < \sigma_2^2$, so that

$$\boldsymbol{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \boldsymbol{\mu} + \boldsymbol{\varepsilon} , \quad \boldsymbol{\varepsilon} \sim N(\boldsymbol{0}, \boldsymbol{\Gamma}), \text{ with } \boldsymbol{\Gamma} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

Here
$$n^e = 1 + \frac{(\frac{\sigma_1}{\sigma_2} - \rho)^2}{1 - \rho^2}$$
 and $b = \sigma_1^2$

- minimum value for TESS is $n^e = 1$, when $\rho = \sigma_1/\sigma_2$
- $n^e \to \infty$ as $|\rho| \to 1$

recall: when $\sigma_1 = \sigma_2, n^e \to 1$ as $\rho \to 1$

Here, when $\rho = \pm 1$ we know μ perfectly, corresponding to 'infinite sample information'.

Argument for TESS

The precision d^{-1} of $\hat{\xi}$ is roughly the effective sample size, except that it has three type of scale factors in it that need to be removed:

- (i) the scales arising from the σ_j in Γ ,
- (ii) the scales arising from possible arbitrariness in the scaling of the columns of X.
- (iii) the scales arising from possible arbitrariness in the definition of ξ
- Step 1. Remove σ scales \rightsquigarrow divide original observation Y_i by its standard deviation σ_i , i = 1, ..., n. That is:

The original model: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \boldsymbol{\Gamma}),$

transforms to: $\widetilde{Y} = \widetilde{X}\beta + \widetilde{\varepsilon}$, $\widetilde{\varepsilon} \sim N(\mathbf{0}, \mathbf{R})$, where $\widetilde{Y} = \boldsymbol{\sigma}^{-1} \mathbf{Y}$, and $\widetilde{X} = \boldsymbol{\sigma}^{-1} \mathbf{X}$ Step 2. Remove X scales \rightsquigarrow divide columns of \widetilde{X} by their maximum (other scalings are possible: to be pursued)

After Steps 1 and 2, we have transformed the original model to the following "scale free" model

$$\widetilde{m{Y}} = m{X}^*m{eta}^* + \widetilde{m{arepsilon}}, \quad \widetilde{m{arepsilon}} \ \sim \ N(m{0},m{R}), \ \ {
m where}$$

•
$$X^* = X C^{-1}$$

 C is diagonal with $c_{ii} = \max_j \left\{ \frac{|X_{ji}|}{\sigma_j} \right\}$ $i = 1, \dots, p$
• $\beta^* = C\beta = \begin{pmatrix} c_{11}\beta_1 \\ \vdots \\ c_{pp}\beta_p \end{pmatrix}$

is like a 'scale free' version of the original parameter β .

Step 3. Compute TESS for original parameters. We *define* the effective sample size matrix for the original parameter β as the precision of $\widehat{\beta^*}$ the MLE in the scale free formulation, giving

$$\boldsymbol{n}_{o}^{e} = \boldsymbol{C}^{-1}(\boldsymbol{X}^{t}\boldsymbol{\Gamma}^{-1}\boldsymbol{X})\boldsymbol{C}^{-1}$$

Step 4. TESS for the parameters of interest. We *define* TESS for any scalar transformation $v \beta$ by

$$[\widetilde{\boldsymbol{v}}\,(\boldsymbol{n}_o^e)^{-1}\,\widetilde{\boldsymbol{v}}^t]^{-1}$$
, where $\widetilde{\boldsymbol{v}}=\boldsymbol{v}/|\boldsymbol{v}|$

Note: we have removed arbitrariness in the scale of \boldsymbol{v} so TESS for ξ is the same as TESS for $k \xi$

Current Status

- We are happy with PBIC, although both PBIC and PBIC* should typically be considered.
 - Note that these are *exact* expressions if the likelihoods are normal and can, hence, even be used as $p \to \infty$.
- We are happy with TESS in linear models, in that
 - it has desirable scale-free properties;
 - it produces pleasant surprises;
 - we have no examples of it failing to provide a sensible answer.
- We are not happy with the following possible definition of effective sample size in non-linear models.

Effective Sample Size in Nonlinear Models

A possible general definition for the 'effective sample size' follows from considering the information associated with observation \boldsymbol{x}_i arising from the single-observation expected information matrix $\boldsymbol{I}_i^* = \boldsymbol{O}'(I_{i,jk}^*)\boldsymbol{O}$, where

$$I_{i,jk}^* = -\mathrm{E}\left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f_i(\boldsymbol{x}_i \mid \boldsymbol{\theta})\right] \Big|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}}.$$

Since $I_{jj}^* = \sum_{i=1}^n I_{i,jj}^*$ is the expected information about ξ_j , a reasonable way to define n_j is

- define information weights $w_{ij} = I_{i,jj}^* / \sum_{k=1}^n I_{k,jj}^*$;
- define the effective sample size for ξ_j as

$$n_j = \frac{I_{jj}^*}{\sum_{i=1}^n w_{ij} I_{i,jj}^*} = \frac{\left(I_{jj}^*\right)^2}{\sum_{i=1}^n \left(I_{i,jj}^*\right)^2} \,.$$

Intuitively, $\sum w_{ij} I_{i,jj}^*$ is a weighted measure of the information 'per observation', and dividing the total information about ξ_j by this information per case seems plausible as an effective sample size.

References

- [1] Dudley, R. and Haughton, D. (1997). Information Criteria for Multiple Data Sets and Restricted Parameters. *Statistica Sinica*, 7, 265–284.
- [2] Kass, R.E., and Raftery, A.E. (1995). Bayes factors. JASA 90, 773–795.
- [3] Kass, R.E., and Vaiyanathan, S. (1992). Approximate Bayes factors and orthogonal parameters, with applications to testing equality of two binomial proportions. *JRRS B* **54**, 129–144.
- [4] Kass, R.E., and Wasserman, L. (1995). A Reference test for neste hypothesis and its relationship to the Schwarz criterion. *JASA* **90**, 928–934.
- [5] Pauler, D. (1998). The Schwarz criterion and related methods for normal linear models. *Biometrika* **85**, 13–27.
- [6] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461–464.
- [7] Tirney, L., and Kadane, J.B. (1986). Accurate approximations of posterior moments and marginal densities. JASA 81, 82–86.