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I. Marginal Likelihood Computation via
Importance Sampling
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/Goal Computation of m(x) = [ f(x | 0)7(0) d6.

Importance sampling: Choose a proper distribution ¢(0), easy to

N

generate from, and such that ¢(8) is roughly proportional to f(x | ) (8).

Then

m(z) — /f(ww)?f(ﬁ’) 1(8) do

(z
~ = wawg(z )< 7) with 8% ~ ¢(8).

q(0) is called the importance function.

Choice of ¢ is crucial: It should
— be easy to generate from;

— be roughly proportional to f(x | 8)7(80);

— have tails that are somewhat heavier than those of f(x | 8)7(0).

\_
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The reason ¢(0) can’t have too sharp tails is that the variance of the

estimate is V/L,
- (e i),

and this may not exist if g(0) has tails that are too light, which can result

in an extremely slow converging algorithm.

Note: Assuming this variance is finite, it can be estimated by v /L,

B Flz | 09)r(0) f(z ] 09)r(09) ’
B LZ{ g(0@) ] [ Z g(8) ]

e One of the great advantages of importance sampling is the ease with

which one can estimate accuracy.

e Some care is needed: monitor V as L increases to make sure it is not

Increasing.

N /
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Common choices of the importance function:

o If there is little data, choosing ¢(@) = 7(0) is okay, and then
L i
m(x) ~ ¢ 3L, fla]6W).

e If there is a lot of data and (@) does not have sharp tails (e.g. is
Cauchy) choosing ¢(0) o< f(x | ) is okay, if the likelihood is easy to

generate from (e.g., is normal).

e A common choice is (@) = N(0 | 0, I) where 8 and I are the mle and

observed Fisher information matrix for 6.

— But the normal distribution has too sharp tails, so a much better

choice is a t-distribution with four degrees of freedom.

— Better yet is ¢(0) = Tu(0 | 0, cI), and try difference ¢ > 1 until
convergence is fast.
— Better yet is ¢(0) = Tu(0 | 0, cI ), where 8, and I, are the

maximizer and Hessian of f(x | 8)7(0).

. /
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II. Rui Paulo’s Slides on Other Methods
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Problem Description |

e T[he posterior distribution on the model space

_ () m(y | v)
Y S @) my )

1+ Z Tty By

v #y

—1

where
— 7(7y) is the prior probability of model M.,;

-m(yl|y)=[fy|0,,~) 70, |~) d, is the marginal likelihood under
model M.,;

= Myiy = Mot [Ty

= By =m(y | ) /m(y | 7).



Strategies |

The basic goal is to characterize the posterior distribution 7(v | ¢), and for that
several methods are available

|— Single-chain methods — Markov chain that moves in the model space
producing a sample {y¥), i =1,..., M} from = (v | y).

The Monte Carlo frequencies

number of () =
M

are possible estimates for (v | y).

|I— Methods that require one chain per model or that compute either the
marginal likelihoods or the Bayes factors one at a time, making use of the

formulas on the previous slide to compute the posterior model probabilities.



| — Single-Chain Methodsl

e Methods that sample over the model space alone, which requires
integration of the model-specific parameters 0,. Examples are Madigan and
York (1995), Raftery et al. (1997), George and McCulloch (1997).

o Methods that sample over the model space and parameter space
jointly
— Reversible Jump of Green (1995)
— Product space search of Carlin and Chib (1995)
— Metropolized Carlin and Chib of Dellaportas et al. (1998)

— Composite model space approach of Godsill (2001).



Il — One Chain per Model Methodsl

Chib’'s methods estimate the marginals under each model using a chain

from that model along with details of the sampling mechanism used to
produce it; (Chib, 1995 and Chib and Jeliazkov, 2001)

RIS-IWMDE of Ibrahim, Chen, and MacEachern (1999) and Chen,
Ibrahim and Yiannoutsos (1999). Uses only one sample from the full model
to estimate all Bayes factors, no details of the sampling mechanism are used;

Recent method by Ming-Hui Chen, which again uses only one sample
from the full model, but in this case estimates all marginal likelihoods. No
details of the sampling method are used either.

Importance Sampling can be used to estimate the marginals under each
model. Requires tuning of the importance function, which may be done
using only one sample from the full model;



Aside — the IWMDE of Chen (1994)'

Let & = (0(;),0(_;)) be a parameter and consider its posterior distribution,

w0 y) o<m(8) f(y]0) .

The goal is to estimate the marginal posterior at a particular point, i.e., to

estimate
(00 | y) = / m(00). 05 | y) dO—;) .

Chen showed that, if w(8;) | 8(_;)) is a conditional density, we have that

)
(005, 0- | y)
(




IWMDE of Chen (1994)]

This estimator as been named Importance-Weighted Marginal Density
Estimator (IWMDE) by Chen (1994).

The choice w(0;) | 8(—;)) = 7(0(j) | O(—;),y) results in the conditional
marginal density estimator (CMDE) of Gelfand et al. (1992).

Chen notes that the CMDE is optimal among all IWMDE.

There is a default choice for w based on approximating the posterior by a
multivariate normal and using for w the induced conditional.



Chib’s Methodsl

e These methods are aimed at computing marginal likelihoods and are based
on the trivial but fundamental identity

_ f(y]6) =(6)
(0 y)

e Find a way of estimating 7(0* | y) and you will have an estimate of the
marginal likelihood.

m(y) Ve .

e 0" is usually chosen to be a point of high posterior density.

Following are several ways of using this idea in different contexts.



Latent Variable Model |

e Suppose that
w6 y) = [ r(6.uy) du
where u might be a vector of imputed latent variables.

e The posterior distribution of @ can be viewed as the marginal posterior
density of (6, u), and IWMDE can be used to estimate 7(6™ | y).

o If || u,y] is available in closed form, CMDE can be used to estimate
(0" | y), giving rise to the estimate

o Iy ]6Y) w6
W= T e oy

where {u),j =1,..., M} is a sample from the posterior distribution of u.

Y



Two-Block Gibbs Samplerl

e Suppose 6 = (01, 0) and that both full conditionals are available in closed
form, i.e., including the normalizing constant.

e |t is clear that
m(0" |y) =m(0] | y) m(03]|601,y) .

7

CMDE known
e |n effect,
1 & -
(07 |y) =17 D> w607 165, y).
j=1

Above, {9&”} is a sample from the posterior distribution of 5.



Two-Block Gibbs Samplerl

Remarks:

1. If 7(6 | 85%,vy) is not available in closed form, in which case
Metropolis-Hastings would in principle be used to sample from this full
conditional, the idea can still be used but 7(07 | y) can be estimated using

IWMDE.

2. The method can be extended to the situation where you have a k-block
Gibbs sampler, but we would have to introduce the idea of a “reduced run”

of a Gibbs sampler.

The two previous examples were explored in Chib (1995). The next idea was
introduced in Chib and Jeliazkov (2001).

_ 10—



Metropolis-Hastings stepl

e Suppose 6 is sampled in one block using the Metropolis-Hastings algorithm.

Ly 0) x(0) 40,0 y)
0.6 1Y) = 1N 50 T0) =(8) (6.6 y)

e Detailed balance
«(0,0" | y) q(6,6" | y) m(0 | y) = (0" | y) (6,0 | y) q(67,0 | y) .
Manipulating the above formula and integrating over 8 shows that

_E1a(6,0" |y) q(0,0" | y)
E2 a<0*70 | y) 7

(6" | y)

where

E, — expectation with respect to (0 | y),
E, — expectation with respect to q(0%,0 | y).



Metropolis-Hastings stepl

Remarks:

1.

The method can be extended to multiple parameter-blocks and to a latent
variable framework. Check Chib and Jeliazkov (2001) for details.

. Chib and Jeliazkov (2001) together with Chib (1995) provide a framework

under which virtually any model that can be fit using MCMC techniques can
have its marginal likelihood estimated.

. One must know the details of the sampling mechanism in order to apply the

methods.

Note the need for additional sampling from the proposal.

. Chib and Jeliazkov (2001) conclude that if a sampling scheme is efficient in

sampling from the posterior, it will give rise to an efficient method to
compute the marginal likelihood.



Aside — Ratio Importance Samplingl

e Suppose we want to compute
mq
2
where m; is the unknown normalizing constant of the un-normalized density

Di, l.e.

are probability densities.

The Ratio Importance Sampling identity of Chen and Shao (1997) is

my E, p1(601)/q(61)
my By p2(62)/q(02)

where ¢ is defined over €2; U ()5, the union of the supports of each density.

13—



Ratio Importance Samplingl

As noted in the paper, if m; and w5 have different dimensions, this formula is not
directly applicable. Instead, this paper suggests the following idea.

Consider the case where
nm:/}xawwwdw

and again the goal is to estimate my /ms..

Let
pi(0,v) =p1(0) w(v | 0)

where w is a completely known conditional density. Then, it is clear that

i = [ 51(6.) d8 dy = m,

14—



Ratio Importance Samplingl

As a consequence, using RIS,

my _my _ Egpi(0) w(v|0)/q(0,7)

mo mao Eq p2(97¢)/Q(07¢>

The choice ¢ = my = pa/my is particularly interesting in that it simplifies to

my E p1(0) w(p | 0)
mso " p2(97¢> |

Note that you only need a sample from 75 in order to estimate the ratio of the

normalizing constants. This idea is explored next in the context of model
selection.

_ 15—



The RIS-IWMDE'

e Model M, has parameter vector 3.
e The full model parameter vector is B = (B,), B(_,)).
e \We will index the full model by v = 1.

e Direct application of the RIS formula

m(y | ) _E | By m(B8))
m(y 1) Y fily ] B) m(B)

where the expectation is taken with respect to the full model.

w(B) | Bry)

e Sample from the full model allows for estimating all Bayes factors!

e This idea has been proposed and derived in Ibrahim, Chen, and MacEachern
(1999) and Chen, Ibrahim and Yiannoutsos (1999).

16—



The RIS-IWMDE'

e The optimal choice for wis 7(8_,) | B(,),y), which is typically not
available, and so the empirical method suggested by Chen (1994) can be
used instead.

e If the priors are compatible by conditioning, i.e. if

T (By) = (B | By = 0) ,

then we have

m(y | ) 1 7T1(16(7)76(—7) =0|y)
= E
miy |~ mBy =0 P BBy PP

=0
_ mBey =01y wvpE.
m(B(-y) =0)

17—



Recent Method by Chenl

Latent variable model:
w0 |y)= [7(6.uly) du.

A direct application of IWMDE leads to

f(y,u|6") 7(07)
fy,u]8)7(0)

w(@ | u) f(y,ul6)

70 |y) = Eoupy (6 | w)

= 7(07) Eg,uly

m(0)  fly,u|0)

18—



Recent Method by Chenl

e Application of this equality in the variable selection problem.

e |f the priors are compatible by conditioning then one has the identity
T (B, w | y) =m(By) =0 By, u,y) m(B),ul|y)/m (B =0]y)

e Substitute in the formula previously derived

ﬂ-'V(IB?’y)) »
7-‘-1(/6(—*}/) =0 |y)

g, By lw flyu]|By)
Suv T B, fwu| Be)

where the expectation is taken with respect to the posterior of the parameter

Wv(ﬁfy) ly) =

7T1(/8(—fy) =0 ‘ /8(7)7U’7 y) ’

and latent variable vectors under the full model.

_ 19



Remarks

o Like RIS-IWMDE, the above formula allows for estimation of all posterior

model probabilities using only a sample from the posterior of the full model.

e One needs to be able to evaluate analytically the conditional

M8 =018
which is a considerable constraint in terms of applicability.

e One also needs to estimate

71(5(_7) =0|y)

which can be done using IWMDE but is certainly prone to instability if

B~ = 0 is not a point of reasonable density under the full model posterior.
Recall that RIS-IWMDE suffers from a similar drawback.

e |f the optimal w is not available, the choice for ¢ is tricky if w is high
dimensional, and repeatedly evaluating f(y,u | 3,)) can be
computationally intensive in the same setting.

_ 20—



Importance Samplingl

e The idea behind importance sampling and how it applies to marginal
likelihood estimation is quite easy to convey:

miy) = [ 7(6) fly|6) o
[0

Q

where {8Y), j=1,... M} is a sample from ¢(-).

e |t is well-known that the method will be as good as the importance function
chosen, and that it is hard to find good importance functions as the
dimensionality of the problem grows.



Importance Samplingl

e Default choices:

AN

(0)]7)

t,(0,[1
t,(E[O | y], Var|@ | y])

(E[
e In the case of variable selection, one can actually tune the importance

function using information from the full model only; one can use the induced
conditional distributions as importance functions for the submodels.

e Note that contrary to the other methods that only require a sample from the
full model, here additional random variables have to be generated.



Example: Probit Regression Modell

e This is an example where most techniques are applicable.

e [ he model:

y; | pi ~ Ber(p;), i =1,..., N, independently
pi = ®(z;0)
B~ N(0,g9 (X'X)™") where we take g = N.

e Latent variable formulation (Albert and Chib, 1993)

zi | B~ N(ziB.1)

_ 23



Gibbs Samplerl

Albert and Chib (1993)

N

o z| By~ |[{y: =1} Hz <0} + {yi = 0} I{z > 0}] ¢(z | =B, 1)

1=1

¢ Bz~ NGL(X'X) ' X'z, 14 (X'X)7)

This fits very nicely into Chib's method, latent variable variant, and furthermore
CMDE can be used since |3 | z, y] is known in closed form

o w8 (B
W) L3 (B 20, y)

where we have set 3* equal to its MLE.

_ 24



Metropolis-Hastings StepI

Without introducing the latent variable, it is easy to do a one-step Metropolis

update with proposal

98,8 | y) ~t,(8,c [1(B)] )

where c can be easily tuned (¢ = 2.4/,/p is a good guess.)

This sampling scheme fits nicely into Chib and Jeliazkov's method, becoming
very simple if the point of high density is chosen to be the MLE.

_25__



_ 26—

o
] ® o
2 2
it ©
3 B .
2 2 z
g 3 z < ]
3 8 ° a
°
- g
M
© =)
° ° °
° ° T T ° T T T T T 1
-2 -1 -0.5 0.0 05 1.0 15 20
@ 8
g o g
3 °
g
© ©
8 ] 3
2 2 2 ° 2 <
z o 2 3 2 2 °
8 ° a8 a 8
3 g
o 3 8
S o
=l
o o - 3 o
° T T ° T T T T T T 1 < T T T T ° T T T
-2 -1 -05 0.0 05 1.0 15 20 25 -10 -8 -6 -2 ) 1 2
o
®
> &
8 <
3
M
3
o
° T 1
2 3



log-BF

log-BF

-8.85 -8.80

-8.90

-6.80 -6.75 -6.70

-6.85

model 00

log-BF

20000 40000 60000 80000 100000 140000

iteration #

model 10

I I I I I I I
20000 40000 60000 80000 100000 140000

iteration #

_27_

-8.25 -8.20 -8.15

-8.30

model 01

20000 40000 60000 80000 100000

iteration #

Importance Local MCMC
Importance Full MCMC
Importance Local MLE
Importance Full MLE
Chib

Chib—-Jeliazkov
RIS-IWMDE

140000




Reversible Jump |

e If we propose to jump from model v to model 4/, we match the dimensions
by setting u = 3., so that

(B, ') = g77(By, 1)
with g, (a,b) = (b, a).

e The proposal q(- | B.,7,7) is simply, like before, a ¢ density centered at the
MLE and with a scale matrix proportional to the inverse of the Fisher
information at the MLE.

_ 028
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Rao-Blackwellized Estimatesl

Introducing the latent variables z, we can implement the following algorithm to

sample jointly from the model and parameter spaces.
e v|y,zx (1+9g) /7% exp(2'P,z/2)

* B[7y,2~NEL(X'X)"' X'z, {£ (X'X)™)

71_|_

° z| BayWNH[[{yiz 1} I{z > 0} + I{y; = 0} I{z < 0}] ¢(2 | xiB,1)

1=1

And then estimate the posterior model probabilities by

(v |y) =Elr(v |y, 2)]

M
%MZ (v ]y, 2
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Conclusions/Recommendations |

Whenever possible, use more than one method;

When using methods based on the output of MCMC, be prepared to run
your chain for much longer than needed for parameter estimation;

The RIS-IWMDE estimates the marginal posterior under the full model
evaluated at zero; that can result in considerable instability when that point
has little density under the full;

Chib’s method and variants perform reasonably well, but if the sampling
mechanism is elaborate they will not be easy to implement;

_ 33



Conclusions/Recommendations |

e Reversible jump followed by Monte Carlo frequencies can give rise to poor

estimates of the posterior model probabilities;

e This was alleviated in a particular example using Rao-Blackwellization, but in

general?

e Importance sampling performs amazingly well, and should not be dismissed
as a viable alternative. We are working on examples where, although the
parameter vector is high dimensional, we can find a very good importance
function for part of that vector, being left with a relatively low-dimensional

vector that is easily dealt with.

_ 34—
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III. Adaptive Importance Sampling and
Exoplanets

Long literature on adaptive importance sampling: OH and BERGER (1993),
CAPPE, GUILLIN, MARIN, and ROBERT (2004), ARDIA, HOOGERHEIDE,
and VAN DIJK (2008), CAPP'E, DOUC, GUILLIN, MARIN, and ROBERT
(2008), CORNEBISE, MOULINES, and OLSSON (2008).

N
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It has an overall annealing layer, wherein one, as temperature ¢t — 0, is
attempting to target [f(x | @)m(0)]1~¢. (This is to try to find the
modes of the integrand.)

The importance function ¢;(0) tries to mimic the target with a mixture
of T} densities, ¢;(0) = Y7, w;Tu(0 | p;, %;).
Samples 89 are drawn from q:(0), and examined for high ratios of
(@] 09)n(09)
qt(g(i>) |

new components of the mixture may be added at those points.

If a weight of a component in the mixture becomes too small, the
component is dropped.

The weights of the mixture and the mean and covariance matrices are

chosen by an analytic fit to the annealing target, using K-L divergence
estimated from the previous draws from ¢ () /
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An example: Ezxoplanet Detection

With Tom Loredo and David Chernoff (Cornell Astronomy)
Bin Liu and Merlise Clyde (Duke Statistics)

10
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Doppler Shift due to
Stellar Wobble
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Parameters for single planet
e 7 = orbital period (days)
e ¢ = orbital eccentricity
e K = velocity amplitude (m/s)
e Argument of pericenter w
e Mean anomaly at t = 0, My
e System center-of-mass velocity vg

o Stellar jitter o>

Keplerian reflex velocity vs. time
v(t) =vg + K (ecosw + cos|w + v(t)])

True anomaly v(t) found via Kepler’s equation for eccentric anomaly:

27t
E(t) — esin E(t) = —~ — My, tan - = (

\ T 2

1—e

1+e 1/2 E
2

tan — .

N

/
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Keplerian velocity model with parameters 8 = {K, 1, e, My, w}:

di = ’U(ti; 9) + E;

For measurement errors with standard deviation o;,

L((g,vo,O'?]) = p({di}|9,vo,03)
ﬂ 1 [ 1 [di—v(ti;e)]zl
— X —_— —
Pl 2my\/0? + 03 P175 o? + o2
1 1,
X exp |—=x“(0)] .
[1:[ 27T\/0,L.2+03 p[ 2X ( )]
_ o ldi —o(t;0))
where y?(0,02%) = Z o

This likelihood has extreme multimodality in 7; challenging multimodality

Ql Mp; and is smooth (but often vague) in e. /

13
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e Let M; denote the model that there are ¢ planets (2 4 5i parameters).

e Determine prior distributions 7 (6;, v, %) for the parameters

(semi-standard, as the result of a SAMSI program, except for o%).

e Compute the marginal likelihood of model M;,
/Lz<92, Vo, O'%)ﬂ'(gi, Vo, 0'3) d@z dUO dO’% .
We have been working on an adaptive importance sampling algorithm

for carrying out the computation.

e Typically look at Bayes factors (the ratio of marginal likelihoods) to

determine the number of planets.

. /
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I. HD73526, 18 observations

Marginal Likelihood ESS/N

My | 5.9013 x 107°% +£5.1325 x 107°2 | 0.9320

My | 4.4886 x 1074 +3.2093 x 10742 | 0.5698

Mo | 1.5511 x 10742 + 3.2878 x 10743 | 0.3458

BayesFactor{ M : My}

BayesFactor{ My : M1}

7.606 x 10°

0.03456

I1I. HD73526, 30 observations

BayesFactor{ M; : My}

BayesFactor{ My : M1}

6.534 x 10°

8.233 x 10%

.

N

15
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ITI. 47 Ursae Majoris

Marginal Likelihood ESS/N
Mo | 2.0198 x 1071004 49,2572 x 10199 | (0.1002
My 3.4400 x 107896 £+ 3.10 x 107897 0.5643
M 1.3500 x 107816 + 1.77 x 10817 0.3324
Ms | 2.8970 x 10782 £9.1623 x 10782° | 0.0089

BayesFactor{ M : Mgy} | BayesFactor{ M5 : M7} | BayesFactor{ M3 : M5}

1.703 x 10198 3.924 x 107 ?

\ /
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IV. Search in Large Model Spaces and the
Inference Challenge

N

17
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Notation: Data x, arising from model M having density f(x | 8), with

unknown parameter 0 that has prior density 7(8).

Search Strategy: Start at any model. Upon visiting model M;, having
unknown parameter 8; consisting of some subset of the variables 64, ...,0,,
determine its marginal likelihood m;(x) = [ fi(x | 8;)7(0,)d0;.

At any stage, with {My,..., My} denoting the models previously visited,

e define the current estimated posterior probabilities of models
(assuming equal prior probabilities - bad choice) as

my(x)
Z?:l m;(x) |

e define the current estimated variable inclusion probabilities (estimated

P(M; | x) =

overall posterior probabilities that variables are in the model) as

\ g = P(6; € model | x) = Zle ]3(/\/13 | x)1{0,eMm; ) /
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1. At iteration k, compute the current posterior model and inclusion

probability estimates, ]3(/\/1‘7 | x) and ¢;.

2. Return to one of the £ — 1 distinct models already visited, in

proportion to their estimated probabilities P (M i 1 x).

3. Add/remove a variable with probability 0.5.

e If adding a variable, choose ¢ with probability o %
e [f removing, choose ¢ with probability o iﬁ—jjc(c

C is a tuning constant introduced to keep the ¢; away from zero or one;

C = 0.01 is a reasonable default value.

4. If the model obtained in Step 3
e has already been visited, return to step 2.

e is new, update p(./\/lj | x) and ¢; and go to step 2.

. /
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The full model for the data Y = (Y1,...,Y,) is (with 02 unknown)

Mp:Y=XB+e, &~N,0,0°1),
e 3=(51,087)is apx1 vector of unknown coefficients, with 8; being
the intercept;

e X =(1X"*)isthen xp (p<n) full rank design matrix of covariates,
with the columns of X* being orthogonal to 1 = (1,...,1)".

We consider selection from among the submodels M;, [ =1,...,2P,
MzY:XZ,82+€, ENNn(O,O'QI),

e 3. = (0B1,3;) is a d(i)-dimensional subvector of 3 (note that we only

1

consider submodels that contain the intercept);

e X; = (1 XY) is the corresponding n x d(i) matrix of covariates.

\o Let f;(y | B3;,07) denote this density. /
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/Prior density under M;: standard choices include \

o g-Priors: 7 (61,8;,0% | ¢) = % x Nay—1) (87 | 0,cnc*(XFX5)~1) |
where c is fixed, and is typically set equal to 1 or estimated in an

empirical Bayesian fashion; these are not information consistent.

e Zellner-Siow priors (ZSN): the intercept model has the prior
7(B1,0%) = 1/0?, while the the prior for other M; is

WiZSN(ﬁlvﬁ;OQ) — 71.7;9(5176:70_2 ‘ C)a

179N (¢) ~ InverseGamma(c | 0.5,0.5).
Marginal density under M;: m;(Y) = [ fi(y | B;,0*)m:i(8;, 0%) dB;do?
Posterior probability of M, when the prior probability is P(M;) (for

multiplicity adjustment, choose P(M;) = Beta(d(¢),p —d(i) + 1)), is

_ P(M)m,(Y)
PMAY) = S b Mmi(Y)

N\ /
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Example: An Ozone data set was considered in Breiman and Friedman
(1985).

N

It consists of 178 observations, each having 10 covariates (in addition

to the intercept).

We consider a linear model with all linear main effects along with all
quadratic terms and second order interactions, yielding a total of 65

covariates and 26° ~ 3.6 x 10!° models.

g-prior and Zellner-Siow priors were considered; these result in easily

computable marginal model probabilities m;(y).

The algorithm was implemented at different starting points with
essentially no difference in results, and run through 5,000,000

iterations, saving only the top 65,536 models.

No model had appreciable posterior probability; 0.0025 was the largest.

/
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variables g-prior ZSN
x1 .860 .943

X2 .052 .060

x3 .030 .033

x4 .985 995

X5 195 .306

x6 .186 .353

X7 .200 215

x8 .960 977

x9 .029 .054

x10 .999 .999
x1.x1 999 999
x9.x9 999 999
x1.x2 D77 732
x1.x7 .076 .142
x3.X7 .021 .022
x4.x7 .330 459
x6.x8 776 .859
X7.x8 .266 .296
x7.x10 975 .952

N

Table 1: Posterior inclusion probabilities of variables in the ozone problem, after
&OO0,000 iterations of the algorithm /
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sum of normalized marginals

Figure 1: Retrospective cumulative posterior probability of models visited in the

onne problem.
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Comparison of models discovered: 25—-node example

o
O ] -
N === Metropolis
5 - —
5\ —i
c
() o
> O —
(o —
L
LL
o _|
Lo
o pa—
| I I I I I |
-1495 -1490 —-1485 —-1480 -1475 -1470 -1465

Model log—posterior

Figure 2: Carvalho and Scott (2008): graphical model selection, 25 node example.
Models found by Gibbs (SVSS), Metropolis, and Feature INClusion Search. Equal
computation time for searches; probability renormalization across all three model

sets.

\ /
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Example 2. Posterior Model Probabilities for Variable Selection

in Probit Regression
(from CMU Case Studies VII, Viele et. al. case study)

Motivating example: Prosopagnosia (face blindness), is a condition
(usually developing after brain trauma) under which the individual cannot
easily distinguish between faces. A psychological study was conducted by
Tarr, Behrmann and Gauthier to address whether this extended to a

difficulty of distinguishing other objects, or was particular to faces.

The study considered 30 control subjects (C) and 2 subjects (S) diagnosed
as having prosopagnosia, and had them try to differentiate between similar
faces, similar ‘Greebles’ and similar ‘objects’ at varying levels of difficulty

and varying comparison time.

\ /
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Data:
C = Subject C \
S = Subject S
G = Greebles
O = Object » = R = Response (answer correct or not).

D = D:if ficulty
B = Brief time

A = images match or not)

All variables are binary. Sample size was n = 20,083. {C=S=1} and
{G=0=1} are not possible combinations, so there are
3 X3 X2xX2x2="7T2possible covariates.

\ /
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Statistical modeling: For a specified covariate vector X;, let y; and

n; — y; be the numbers of successes and failures among the responses with
that covariate vector, with probability of success p; assumed to follow the

probit regression model
pi = ®(B1 + 2]72:2 Xi;85)-

The full model likelihood (up to a fixed proportionality constant) is then
Fy|B)=TT2pY (1 —pi)i—ve.

Goal: Select from among the 272

submodels which have some of the 3; set
equal to zero. (Actually, only models with graphical structure were
considered, i.e., if an interaction term is in the model, all the lower order

effects must also be there.)

\ /
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Prior Choice: conditionally induce submodel priors
from a full-model prior

If all models are nested in a ‘Full Model’ M;, having parameter 3, one

possibility is to
e choose a prior m;(3);

e Define a prior on the submodel M; by m;(3,) = m(8; | B_; = 0), where

3_, consists of the other coordinates of 3.

Ezample. Suppose m;(83) is N, (0, V1), where V is a given precision
matrix. Then m;(3;) is N, (0,V,™!), where V; is the corresponding

submatrix of V.

N\ /
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Application to the Case Study
The full model likelihood is

L(B) =TI2, p (1 — py)™i ¥,

where y; and n; — y; are the numbers of hits and failures for the specified

vector of covariates X ;, and

pi = (81 + 232:2 Xi;85)-

A standard noninformative prior for p = (p1,p2,...,p72) is the uniform
prior, usable here since it is proper.

Change of variables yields m;(3) is N72(0, (X' X)™1), where

X' =(X],X5,...,X"%,).

\

N
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Two Modifications of the Priors
I. Induce priors from m;(3) = N72(0, (X' X)™1).
e g-priors using ¢ = 72?7 (why not ¢ = n = 20,08377)
e Also tried ¢ = 18.

II. For Mj, let H; be the matrix such that 8, = H ;8. Then use
m;(B;) = N, (0, (H; X H})'H; X H}) ™).

e Arises from applying the “uniform p” argument separately to each

model; equivalent to marginalizing out in the prior for the full model.

. /
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Computation of the marginal probability of a visited model: Use

the modified Laplace approximation
mw) = [ £l 8)m(8,)d8,

~ fily| BT+ V| Pe
where T ; 1s the observed information matrix.

e This allows use of standard probit packages to obtain Bj, fily | Bj),
and I je

e Note that (approximate) posterior means, [ ;, and covariance matrices,

>.;, are also available in closed form.

. /
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\

N

Similarities Among Selected Models

e The search found much better models than the search strategy (a
combination of backward elimination and MCMC) used in the original
paper. Indeed the top two models in the paper for their choice of
n = 50 for BIC ranked #7 and #1, respectively, under Prior 1 (the
uniform induced conditional prior). No other models in the paper

ranked in the top ten for any prior.

e The top model for Prior 4 (the multiple uniform induced prior) ranked
#5 under Prior 1.

e The models for Prior 2 (¢ = 72) and Prior 3 (¢ = 18) were considerably
smaller (# variables in the mid-30’s) than those for Prior 1 and Prior 4
(# variables in the mid-40’s).

/
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Uniform-induced conditional prior

Posterior probability vs model size (1) Posterior probabilities vs model explored (1)

Posterior probability
0.002 0.004 0.006 0.008 0.010 0.012 0.014

Posterior probability
0.002 0.004 0.006 0.008 0.010 0.012 0.014

30 40 60 70 0 1000 2000 3000 4000 5000
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-
-
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Utilization of the Posterior Model Probabilities

One usually must decide between
e Model Averaging: perform inferences, averaged over all models.

e Model Selection: choose a specific model, e.g.
— the maximum posterior probability model;

— the median probability model (that which includes only those §; for
which P(3; € model | y) > 0.5).

\ /
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Posterior inclusion probabilities for the 72 parameters

Var. priorl prior2 prior3 prior4
Int. 1 1 1 1
C 1 1 1 1
S 1 1 1 1
G 1 1 1 1
O 1 1 1 1
D 1 1 1 1
B 1 1 1 1
A 1 1 1 1
CcG 0.966 0.082 0.154 0.955
CcO 0.519 0.033 0.063 0.155
CD 0.780 0.035 0.109 0.454
CB 1 0.999 0.999 1
CA 1 1 1 1
SG 1 1 1 1
SO 0.999 0.877 0.969 0.995
SD 1 0.999 0.999 1
SB 1 1 1 1
SA 1 1 1 1

Var. priorl prior2 prior3 prior4
GD 0.998 0.358 0.519 0.833
GB 1 1 1 1
GA 1 1 1 1
OD 0.999 0.418 0.700 0.744
OB 1 1 1 1
OA 1 1 1 1
DB 1 0.999 0.999 0.999
DA 1 1 1 1
BA 1 1 1 1

CGD 0.264 0.000 0.000 0.134

CGB 0.938 0.002 0.020 0.943

CGA 0.936 0.002 0.018 0.944

COD 0.074 0.000 0.000 0.003

COB 0.417 0.001 0.003 0.080

COA 0.275 0.003 0.013 0.094

CDB 0.684 0.012 0.063 0.357

CDA 0.323 0.001 0.011 0.235

CBA 0.999 0.639 0.833 0.999
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Posterior inclusion probabilities for the 72 parameters

Var. P1 P2 P3 P4 Var. P1 P2 P3 P4
SGD 0.997 0.079 0.335 0.661 CGBA 0.932 0.000 0.013 0.941
SGB 1 0.999 0.999 1 CODB 0.002 0.000 0.000 0.000
SGA 1 1 1 1 CODA 0.006 0.000 0.000 0.001
SOD 0.990 0.165 0.434 0.640 COBA 0.013 0.000 0.000 0.001
SOB 0.091 0.016 0.034 0.116 CDBA 0.088 0.000 0.001 0.104
SOA 0.999 0.843 0.956 0.993 SGDB 0.996 0.072 0.324 0.652
SDB 0.999 0.821 0.957 0.998 SGDA 0.379 0.000 0.006 0.579
SDA 0.999 0.998 0.999 0.999 SGBA 1 0.999 0.999 1
SBA 1 0.999 0.999 1 SODB 0.004 0.000 0.000 0.004
GDB 0.996 0.096 0.349 0.673 SODA 0.176 0.013 0.055 0.250
GDA 0.442 0.012 0.025 0.616 SOBA 0.004 0.000 0.000 0.002
GBA 1 1 1 1 SDBA 0.271 0.031 0.065 0.654
ODB 0.128 0.004 0.016 0.037 GDBA 0.206 0.000 0.001 0.515
ODA 0.999 0.407 0.689 0.737 ODBA 0.005 0.000 0.000 0.000
OBA 0.329 0.065 0.139 0.045 CGDBA 0.000 0.000 0.000 0.003
DBA 0.999 0.770 0.920 0.997 CODBA 0.000 0.000 0.000 0.000
CGDB 0.111 0.000 0.000 0.073 SGDBA 0.144 0.000 0.000 0.473
CGDA 0.004 0.000 0.000 0.018 SODBA 0.000 0.000 0.000 0.000
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Here model averaging seems best (individual models do not seem to be of

particular interest). Thus one estimates contrasts d = x*(3 by

d=x"B=x" ZP(Mj | y)H
J

having estimated variance

0 =) P(M; | y)x*H}(Z; + p;p) Hyx"' — (x*B)%.
j
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Contrast Prior 1 Prior 2 Prior 3 Prior 4
SM/GR/FA | .683(0.240) | .780(0.239) | .829(0.240) | .306(0.282)
SM/OB/FA | .619(0.161) | .606(0.161) | .596(0.161) | .640(0.162)
SM/OB/GR | -.063(0.242) | -.173(0.244) | -.232(0.244) | .334(0.286)
CR/GR/FA | -.761(0.279) | .000(0.000) | .000(0.000) | -.872(0.282)
CR/OB/FA | .000(0.000) | .000(0.000) | .000(0.000) 000(0.000)
CR/OB/GR | .761(0.279) | .000(0.000) | .000(0.000) 872(0.279)

Median models (Posterior Probabilities) at iteration 5000:

Prior 1: [CO OB CDB SOD SOA SDA ODA DBA CGBA SGDB SGBA]

(0.001)

Prior 2: [GD OB CBA SOA SDB SDA ODA DBA SGBA] (0.067)

Prior 3: [OB CBA SOA SDB SDA DBA SGBA] (0.016)

Prior 4: [OB SOD SOA ODA CGBA SGDB SGDA SGBA SDBA GDBA]

(0.001)

N

/
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Non-Bayesian search in model space: The same principle can be

applied for any search criterion and for any model structure:

e Choose the model features (e.g. variables, graphical nodes, links in

graph structures) you wish to drive the search.
e Choose the criterion for defining a good model (e.g. AIC)

e Convert the criterion to pseudo-probabilities for the models, e.g.
}3(/\/1]- | x) o eMCi/2
e Define the feature inclusion probabilities as

k
G; = P(featurez € model | x) = Z M; | x) {featuref,;eMj} '
j=1

e Apply the search algorithm.

. /
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/ Summary of Search \

For (non-orthogonal) large model spaces,

e Effective search can be done by revisiting high probability models and
changing variables (features) according to their estimated posterior inclusion

probabilities. The technique is being used to great effect in many fields:
— Statistics: Berger and Molina, 2004 CMU Case Studies; 2005 Statist. Neerland.
— FEconomics: Sala-i-Martin, 2004 American Economic Review; different variant
— (CS: Schmidt, Niculescu-Mizil, and Murphy, 2007 AAAI; different variant
— Graphical Models: Carvalho and Scott, 2007 tech report

e There may be no model with significant posterior probability (in the ozone

example the largest model posterior probability was 0.0025) and thousands

or millions of roughly comparable probability.

e Of most importance is thus overall features of the model space, such as the
posterior inclusion probabilities of each variable, and possibly bivariate

inclusion probabilities or other structural features (see, e.g., Ley and Steel,

\ 2007 J. Macroeconomics). /
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